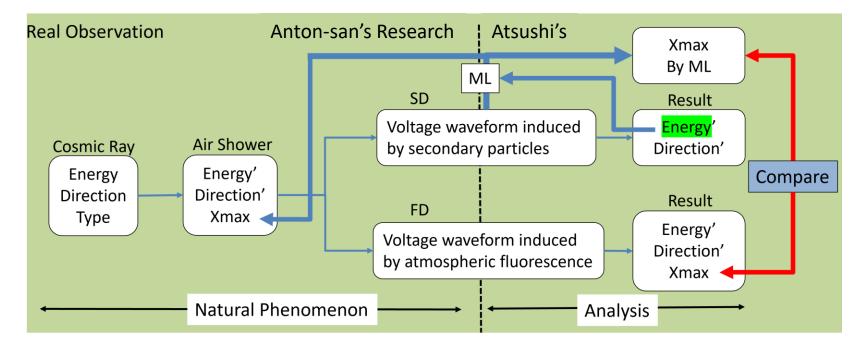
Hybrid Simulation and the Structure of HDF5 for ML Analysis

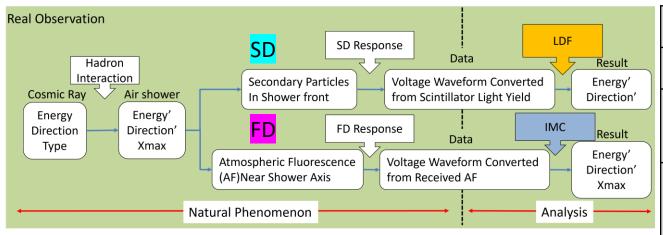
Shinshu University M1 Atsushi Saito


2025/10/15
Telescope Array Data Analysis Machine Learning
@IoP, Academia Sinca, Taiwan

- Overview and Purpose of this research
- Comparison of SD and FD Observations & Reconstruction Methods
- Comparison of the Analysis Flow: Real Observation vs. MC Simulation
- Why use the FD-reconstructed Xmax as a reference for comparison
- Current Status
- Hybrid Data Set and HDF5 file structure

Anton-san's Purpose: To predict the true Xmax of air showers from SD data using Machine Learning(ML)

Motivation: How much error can a ML-based analysis method have when predicting the true Xmax?



Purpose of this: To estimate the error of ML-based analysis methods

Method: To Compare the Xmax predicted by ML vs the Xmax reconstructed by FD

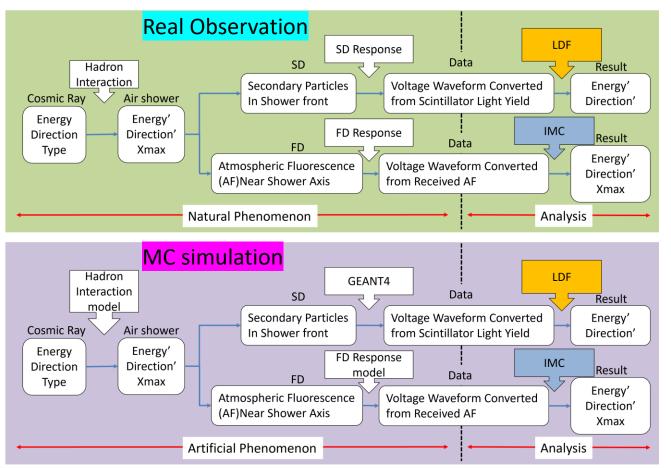
SHINSHU Comparison of SD and FD Observations & Reconstruction Methods

SD	estimates the primary energy based on the particle
de	nsity and lateral distribution (= LDF)

→ This method relies on a lookup table and rainbow plot

	<u>SD</u>	<u>FD</u>
Target	Shower front	Shower axis
Object	Secondary particle	Photons
Method	Direct/ Sampling	Indirect/ Part of shower development
Measured quantity	Particle density	Received light amount
MC dependence	dependent	independent

FD determines the Xmax that best reproduces the observed data along the shower axis (= Invers Monte Carlo)

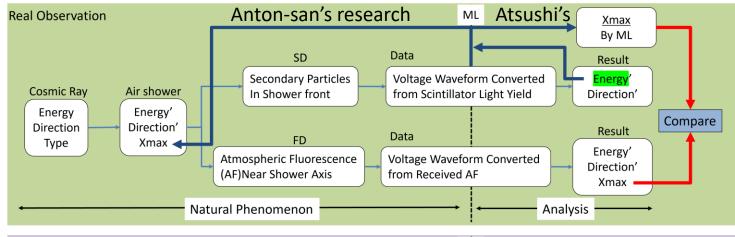

→ This method is based on observational data

The reconstruction method of the SD depends on MC simulations,
While The reconstruction method of the FD does not depend on MC simulations

2025/10/15 TADAML2025 4

SHINSHU Comparison of the Analysis Flow: Real Observation vs. MC Simulation

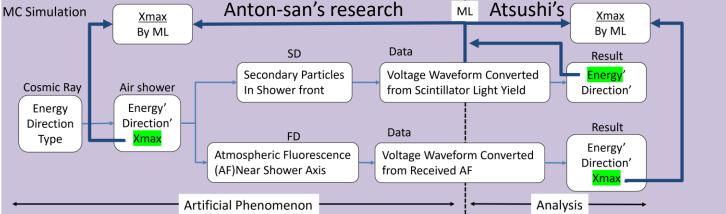
	Real Observation	MC simulation
Experimental setup	Natural/ Continuous	Nature-like/ Discrete
Interaction	Occurs as a natural phenomenon	Carried out Probabilistically
Detector Response	Continuous/ Non-uniform	Sampled/ Uniform
Analysis	LDF, IMC	LDF, IMC


MC simulations cannot fully reproduce the natural phenomena observed in real data The same reconstruction programs for the SD and FD are used for both real observations and MC simulations

The analysis procedures are minimally model-dependent and capable of reproducing real observations.

2025/10/15 TADAML2025 5

SHINSHU Why use the FD-reconstructed Xmax as a reference for comparison



To estimate the error, the following conditions must be satisfied:

- (1)Comparable with real observational data
- 2 Less depends on Models
- 3 Able to reproduce the conditions of real observations

These conditions are satisfied by the **Xmax reconstructed by the FD**.

To use the Xmax reconstructed by FD as a reference for comparison, we need construct a ML model that predicts the FD-reconstructed Xmax, AND THEN, compare the Xmax predicted by ML And the Xmax reconstructed by FD

•Created SD DataSets → Anton-san's SD DataSet(includes "Bad SD info")

Created Hybrid DataSets → The amount of data Sets is sufficient for a Test.
 (have been creating)

Created HDF5 files includes SD-FD event parameters for ML model training

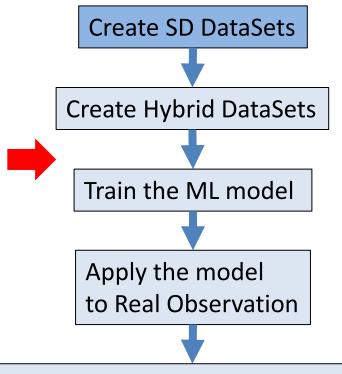
Current:

Checking whether the Hybrid DataSets are appropriate

MC DataSets (Thrown)

Particle: Proton, Iron

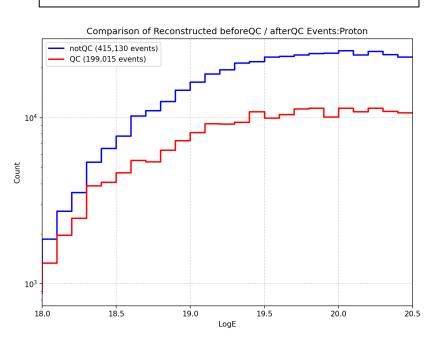
Interaction model: QGSJET-II-04

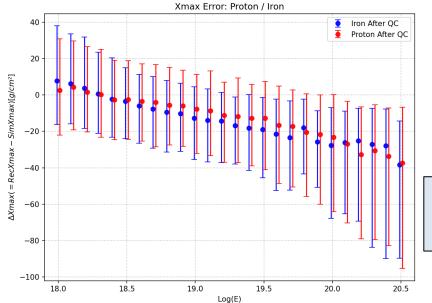

LogE: 18.0 ~ 20.5 (0.1 energy bin)

Shower Types: 1,000 showers / bin

Energy Distribution: E-1

Observation period: 2008/04/17 ~ 2016/06/03 (3,000 days)


FD Station: BR


Compare the Xmax predicted by ML and the Xmax reconstructed by FD

Quality Cut for FD

- Number of PMT > 20
- Shower track length > 15 deg
- Zenith angle < 55 deg
- Minimum viewing angle > 20 deg
- Xstart < Xmax < Xend</p>

The error bar plot below is made from: median and 68% percentile.

Create SD DataSets Create Hybrid DataSets Train the ML model Apply the model to Real Observation Compare the Xmax predicted by ML and the Xmax reconstructed by FD

I am in the process of investigating the cause of a potential problem in the simulation.

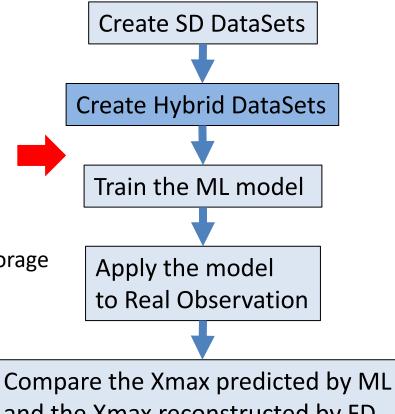
Dstparser:

The tool to convert files to HDF5(.h5) **HDF5** is binary file for ML model training

HDF5

SD's detector info (7×7) -> compress arrival times [up/low] detector_position detector status...etc. SD's standard reconstructed data() reconst Energy reconst_S800 shower core shower_axis...etc.

Anton-san made the HDF5 file format The HDF5 file includes 2types:


- •7 × 7 tile-format
- the scalar quantities

The 7 × 7 SD tile is further compressed for storage

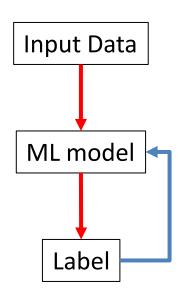
Step 1. Coordinate Transformation

Step 2. Binning

Step 3. Physical Quantity Mapping

and the Xmax reconstructed by FD

SHINSHU HDF5 includes FD parameters for ML model training


Dstparser:

The tool to convert files to <u>HDF5(.h5)</u>
<u>HDF5</u> is binary file for ML model training

HDF5 SD's detector info (7×7) -> compress arrival times [up/low] detector_position detector status...etc. SD's standard reconstructed data() -Input Data reconst Energy reconst_S800 shower core shower axis...etc. FD's standard_reconstructed_data() thrown Xmax reconst Xmax -Label thrown LogEO reconst LogEO

In accordance with the same format,

- Perform SD-FD event-by-event matching
- Append the FD-reconstructed to the file

Create SD DataSets Create Hybrid DataSets Train the ML model Apply the model to Real Observation

Compare the Xmax predicted by ML and the Xmax reconstructed by FD

Summary:

- •The Xmax reconstructed byFD satisfies the necessary conditions to serve as a reference for comparison.
 - ①Comparable with real observational data
 - ②Less depends on Models
 - 3 Able to reproduce the conditions of real
- Currently validating the quality of the Hybrid Dataset.

An issue has been identified where the error is larger than expected, suggesting a potential problem in the simulation.

Future:

Investigate and resolve the cause of the Xmax error.

Thoroughly check the simulation and reconstruction process.

Proceed to train the Machine Learning model.

Once the dataset quality is confirmed, I will begin training the model.

Evaluate the model performance.

Apply the trained model to real observation data and compare its predictions with FD-reconstructed Xmax to the perspective of uncertainty

Finally, I would like to thank all the members who supported my two-month research stay and made this work possible. Thank you very much.

Back Up

2025/10/15 TADAML2025 12