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Overview

● Overview of neural network architectures
○ BDT, CNN, GNN, …

● Robustness and Domain Adaptation
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3

Hadron- and photon-induced air showers



Boosted Decision Trees

Input data:
 fixed set of features

Processing: 
multistep binary partition

Pros:
Simple, effective, baseline.

Cons:
Simple

Reconstructed 
EAS features
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Input parameters:

1. Linsley front curvature
2. Area-over-peak (AOP)
3. AOP slope
4. Reconstructed S800
5. Reconstructed E
6. Integral signal
7. …
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Fully connected neural networks
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Convolutional neural networks

6



Convolutional neural networks

Requirements: 

● Make use of image structure

● Uniform analysis of different parts 
of an image

● Shift-invariance of the predictions
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Vincent Dumoulin, Francesco Visin - 
A guide to convolution arithmetic for deep learning 

“image”

higher level 
features

https://arxiv.org/abs/1603.07285


Convolutional neural networks

Deeper layers of neural networks catch more complex structures:

edges → circles → general face pattern
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CNN: TA SD stations grid

● x, y, and z coordinates of the detector
● Detector’s total signal
● Time of the plane front arrival
● Difference in time between the start of the 

recorded signal and the wavefront arrival
● Masks:

○ Was triggered?
○ Was saturated?
○ Was excluded from the geometry fit?

High level features

CNN
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Photon-likeness

MLP



Recurrent neural networks
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Recurrent neural networks

Designed to analyze sequences.

d1 d2 di dn… …

si+1 = f(si, di)

Recurrent block - “mini” neural network with internal state st
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Meaning

Recurrent neural networks

Due to hot weather he quickly became tired. 
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TA SD events as ordered sequence

detectors ordered by time of the plane front arrival

properties properties properties properties

Recurrent 
neural 

network

         … …

Air shower 
properties
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Arbitrary detector layout



Graph neural networks
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Graphs allow to represent complex data. 

Graph neural networks

Nodes of the graph carry representation (features) of the corresponding object.
One can introduce features to edges as well. 15



Graph neural networks
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Graph neural networks “update” graphs.
1 layer = 1 graph update
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Graph neural networks
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Graph neural networks “update” graphs.
1 layer = 1 graph update

Convolutional GNN:

For each node:
● Consider its neighbours
● Aggregate their features to a single vector:

○ Must be independent of graph representation
For example, a = 1/Nneighb( v2+v3+v4 )

a
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Graph neural networks
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Graph neural networks “update” graphs.
1 layer = 1 graph update

Convolutional GNN:

For each node:
● Consider its neighbours
● Aggregate them to a single vector:

○ Must be independent of graph representation
For example, a = 1/Nneighb( v2+v3+v4 )

● Update the node using a small MLP:
○ vnew

1= f(ፀ)(v1,a)

a
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GNN and TA SD
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Arbitrary detector layout
Need to define “close” stations (time, distance, …)

SD stations   ↔    Graph nodes
Closest stations  ↔  Connected nodes



Transformers
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Transformer 
=

Graph Neural Network with:

● All nodes connected
● Each nodes importance is estimated via 

self-attention mechanism
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detectors sequence (arbitrary)

properties properties properties properties         … …

Simplified transformers

properties’ properties’ properties’ properties’         … …

Transform
er 

layer

● Arbitrary detector layout
● Easy to implement:

○ Native PyTorch layer
○ DTS Parser provides suitable data representation



Robustness and domain shift
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Phase space 
of all events

Photons

Protons

ξ0 1

Subspace of phase space, 
identified as photons with 

confidence level ξ

Phase space splitting
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Applicability of trained neural networks

Neural network are trained on specific data with certain data distribution and are 
very sensitive.

Disagreement between training and to-be-applied-on data can be crucial:
                      systematic shifts, bad quality of MC data, …
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● Imitate noise in 
measurements

● Data augmentation

● Intentionally use simple neural networks

● Apply regularization techniques

Towards robustness

M. Bronstein, Geometric Deep Learning
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MC imperfections

Train NN to distinguish between MC and SD:

 
Stations data only With reconstructed 

parameters
With waveforms

MC 
(QGSJETII-04) 

vs 
SD

70% 75% 99.9%

QGSJETII-04
vs

EPOS-LHC
55% 56% 60%
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Domain adaptation as solution arXiv:1409.7495

Source and target domains might be different.

But one can restrict NN to learn domain-invariant features.
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Domain adaptation technique
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Data processing for TA SD energy regression 

Feature 
extractor



Limitation of domain adaptation
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X - phase space of TA SD responcies for UHECRs.

Neural network maps:                      P(X)   →   P(Z)   →   P(Eest)

Domain adaptation aligns P(Z):               P(Z)MC = P(Z)Exp

But:                                                    P(z) = ∫P(z|E)P(E)dE

Hence  domain adaptation may align spectra!



Domain adaptation technique
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Hence  domain adaptation does align spectra!

Ground-truth spectra for DA Estimated TA SD spectra



Adaptive domain adaptation
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Observation: predicted TA 
SD spectra deviates 

towards HiRes

Idea: iteratively reweight MC 
events to yield the currently 
estimated TA SD spectrum; 

find equilibrium point.

Domain adaptation is 
focused on getting 

domain-invariant P(z|E) 
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Adaptive domain Adaptation



Comparison of energy reconstructions
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Estimated TA SD spectra



DA perfectly works on MC-to-MC
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Both DA and ADA 
correctly reconstruct 
disturbed MC spectra

Train model on HiRes MC, 
try to reconstruct modified 

spectrum.



DA and choice of hadronic interaction model
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Estimated TA SD spectra

Predictions shift due to 
DA is similar to that of

Changing hydronic 
interaction model.



Conclusion
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● Power and weakness of neural networks: sensitivity to fine details
○ Complex NNs require good MC-data agreement for reliability

● Adaptive domain adaptation is important for reliable energy reconstruction:
○ Converges to the same spectrum

● Systematic error due to domain shift is comparable to other uncertainties

● Domain adaptation disturbs data but in a way that MC and experimental 
data have consistent physics (P(z|E)).

● Preliminary: good SD/FD agreement.



Neural network
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Data representation

40



NN architecture
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Preliminary SD/FD comparison
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Good agreement with FD: residual variance 0.0075  (0.01 for standard reco)


