


Overview

e Overview of neural network architectures
o BDT, CNN, GNN, ...

e Robustness and Domain Adaptation



Hadron- and photon-induced air showers
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Boosted Decision Trees

Input data:
fixed set of features

Processing:
multistep binary partition

Pros:
Simple, effective, baseline.

Cons:
Simple

depth

Reconstructed
EAS features
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photon
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phot(an




Fully connected neural networks

Input parameters:

Linsley front curvature Wix+br WiX+bs
Area-over-peak (AOP) i [ wxtb,
AOP slope |

Reconstructed S800 fly)

Reconstructed E
Integral signal

WmX+Dm

NOo R0~

_________________________________________________________________________

photon-likeness



Convolutional neural networks



Convolutional neural networks

higher level

features
Requirements:

e Make use of image structure

e Uniform analysis of different parts
of an image

e Shift-invariance of the predictions

“imageu /

Vincent Dumoulin, Francesco Visin -
A guide to convolution arithmetic for deep learning


https://arxiv.org/abs/1603.07285

Convolutional neural networks

Deeper layers of neural networks catch more complex structures:

edges — circles — general face pattern



CNN: TA SD stations grid

X, ¥, and z coordinates of the detector
Detector’s total signal
Time of the plane front arrival
Difference in time between the start of the
recorded signal and the wavefront arrival
Masks:

o Was triggered?

o Was saturated?

o Was excluded from the geometry fit?

CNN

High level features

MLP

Photon-likeness



Recurrent neural networks
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Recurrent neural networks

Designed to analyze sequences.

Recurrent block - “mini” neural network with internal state S,
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Recurrent neural networks

Due to’ hot'weather he!quickly becameitired.

/> — Meaning
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TA SD events as ordered sequence

detectors ordered by time of the plane front arrival

[ properties J [ properties J ______ { properties } [ properties J
Recurrent .

neural Air shower
network properties

Arbitrary detector layout -



Graph neural networks
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Graph neural networks

Graphs allow to represent complex data.

g™
N

Nodes of the graph carry representation (features) of the corresponding object.
One can introduce features to edges as well. 15
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Graph neural networks

Graph neural networks “update” graphs.

° 1 layer = 1 graph update

AN
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Graph neural networks

Graph neural networks “update” graphs.
1 layer = 1 graph update

Convolutional GNN:

For each node:
e Consider its neighbours
e Aggregate their features to a single vector:
o Must be independent of graph representation
For example, a = 1/Nneighb( V,tv,ty, )
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Graph neural networks

Graph neural networks “update” graphs.
n 1 layer = 1 graph update

Convolutional GNN:

For each node:
e Consider its neighbours
e Aggregate them to a single vector:
o Must be independent of graph representation

For example, a = 1/Nneighb( V,tv,ty, )
° e Update the node using a small MLP:
e o v =f(B)(v,.a)

1
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GNN and TA SD

AN

SD stations « Graph nodes
Closest stations < Connected nodes

Arbitrary detector layout
Need to define “close” stations (time, distance, ...)
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Transformers
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Transformer

Graph Neural Network with:
e All nodes connected

e Each nodes importance is estimated via
self-attention mechanism
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Simplified transformers

detectors sequence (arbitrary)

......

e Arbitrary detector layout
e Easy to implement:
o Native PyTorch layer
o DTS Parser provides suitable data representation

Johe]
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Robustness and domain shift



Phase space splitting

Subspace of phase space,
identified as photons with

confidence level ¢
Photons

Phase space
of all events

Protons
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Applicability of trained neural networks

Neural network are trained on specific data with certain data distribution and are
very sensitive.

Disagreement between training and to-be-applied-on data can be crucial:
systematic shifts, bad quality of MC data, ...

o _ . N

pig “airliner”
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Towards robustness

e |mitate noise in
measurements [

e Data augmentation

e Intentionally use simple neural networks distortion

M. Bronstein, Geometric Deep Learning

e Apply regularization techniques
26



MC imperfections

Train NN to distinguish between MC and SD:

Stations data only With reconstructed
parameters
MC
(QGSJETII-04) 70% 759
VS
SD
QGSJETII-04
VS 55% 56%

EPOS-LHC

With waveforms

99.9%

60%
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Domain adaptation as solution arXiv:1409.7495

Source and target domains might be different.

But one can restrict NN to learn domain-invariant features.
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Domain adaptation technique

oL,
e ™
DD DF
S _

class label y

@
U‘\ J

-

Y
= label predictor Gy (-;6,)

domain JcLlassiﬁer Ga(+;64)
N

domain label d

b 4
feature extractor G¢(+;6y)

o 7

forwardprop  backprop (and produced derivatives)

29



Data processing for TA SD energy regression

~
MC training
data (E™)

[ MCfor
domain
adaptation

(HiRes)

"% Y
Experimental

data

~

Event-level data
Regression representation

Batch

Combined DA
batch e
(1:1 ratio)

———— — — — — — — — — -

N

Domain
adaptation
layer

Regression
head

-

Combined loss }
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Limitation of domain adaptation

X - phase space of TA SD responcies for UHECRs.

Neural network maps: P(X) — P(@Z) — P(E_)
Domain adaptation aligns P(2): P(2)c = P(Z)Exp
But: P(z) = |P(z|E)P(E)dE

Hence domain adaptation may align spectra!
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Domain adaptation technique

Ground-truth spectra for DA

[ HiRes initial
L 1 HiRes low
[ HiRes high

0,00 '%—J_I T T T T T T T
0.00 0.25 050 0.75 1.00 125 150 175 200

MC Energy, log;o(E/1EeV)

0.50

0.25 -

0.00 -

Estimated TA SD spectra

[ L7 MC, (HiRes low)
' 1 TA SD, (HiRes low)
U3 MC, (HiRes high)
1 TA SD, (HiRes high)

000 025 050 075 1.00 125 150 175 2.00
Estimated energy, log,o(E/1EeV)

Hence domain adaptation does align spectra!
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Adaptive domain adaptation

Observation: predicted TA
SD spectra deviates
towards HiRes

|dea: iteratively reweight MC

events to yield the currently

estimated TA SD spectrum;
find equilibrium point.

Domain adaptation is
focused on getting
domain-invariant P(z|E)

Algorithm 1 Adaptive domain adaptation (ADA)

Require:
Require:
Require:
Require:
Require:

Training data for label prediction Dy, (E~! MC)

Target domain data Deyp (experimental data)

Source data for DA Dg, (HiRes MC)

Energy bin edges {Ei}f’; |» convergence tolerance 7
Weights wyew (E) for casting E~! spectrum to HiRes one

. Initialize bin weights: u( J - n'i““ farg = 1, i B

2: Initialize neural network parameters ¢

3: repeat

4: Train for one epoch:

5: Sample batch from Dy, with weights wiew (E) - wfk)

6: Sample batch from Dy, with weights w )

7 Sample batch from Dexp

8 Update ¢ via gradient descent on Lyl = Lyeg + Ldomain
9: Estimate spectra:

10:
11:

(k)(Ei) « histogram of E(Dy,)

pé’{g (E;) « histogram of E(Deyp)

12: Update weights:

13:

k+1 k k
wierD) )éxgus )/ pS(E;)

14: until max; |u,. fl‘ ])| ZF

15: Return: Trained model. equilibrium weights w,

(k)




Adaptive domain Adaptation

Event-level data
representation

MC training Regression
data (E™") Batch
3 2\
Experimental
data N g
& J N '
' > Combined DA
o . - batch
MC for b (1:1 ratio)
domain g
adaptation
\ (HiRes) P

B

%\\
)
=

1st layer }

o
i e i

Transformer
encoder

-

Domain
adaptation
layer

-4

Regression
head

B

™~

4

: Once per
| epoch

:

Infer MC and
experimental
spectrums

2\

i o 5

~

—

Combined loss }

Update MC
event weights
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Comparison of energy reconstructions

density

1.4 4
1.2
1.0 1
0.8 1
0.6
0.4
0.2 1

Estimated TA SD spectra

[ Without DA
1 Adaptive DA
[ Standard DA

0 T T T T T T T T T
0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00

Estimated energy, log,o(E/1EeV)
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DA perfectly works on MC-to-MC

sit

=

De

1.6 1
1.4
1.2
o, 1.0-
0.8 -
0.6 -
0.4 -
0.2 -

0.0

1 True MC spectrum
[ ADA reconstructed

. DA reconstructed

0.0 0.5 1.0 1.5 2.0
log10 (Emc/1EeV)

Train model on HiRes MC,
try to reconstruct modified
spectrum.

Both DA and ADA
correctly reconstruct
disturbed MC spectra
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DA and choice of hadronic interaction model

density

1.4
1.2+
1.0 1
0.8
0.6 1
0.4 1
0.2 -

0.0' T T T T T T T —
0.00 025 050 0.75 100 1.25 150 175 2.00

Estimated TA SD spectra

[ Without DA
1 ADA to QGSJET-1I-04
.-+ ADA to EPOS-LHC

Predictions shift due to
DA is similar to that of
Changing hydronic
interaction model.

Estimated energy, log,o(E/1EeV)
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Conclusion

e Power and weakness of neural networks: sensitivity to fine details
o Complex NNs require good MC-data agreement for reliability

e Adaptive domain adaptation is important for reliable energy reconstruction:
o Converges to the same spectrum

e Systematic error due to domain shift is comparable to other uncertainties

e Domain adaptation disturbs data but in a way that MC and experimental
data have consistent physics (P(z|E)).

e Preliminary: good SD/FD agreement.
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Neural network
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Data representation

Station feature vector:
1-3) Coordinates

4-5) Activation times @ 7-18) Waveform features <

6) Registered charge

4
|

}

-

/

~

All stations triggered in an event

—

__ -~ Single station

Corresponding
waveform

Waveform encoder

A




NN architecture

d

Waveform
encoder

A

Registered
waveforms

- GB —

Stations triggered
in an event

2

Linear
transformation
(embedding)

3

Transformer-
encoder
(5 layers)

|

Reconstructed
parameters

Energy
prediction

head

Domain
adaptation
layer
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Preliminary SD/FD comparison

- Bland-Altman Plot for FD and ADA NN
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Good agreement with FD: residual variance 0.0075 (0.01 for standard reco)



