Domain Adaptation

The problem

Neural networks require data to train on. But what if such data is unavailable?

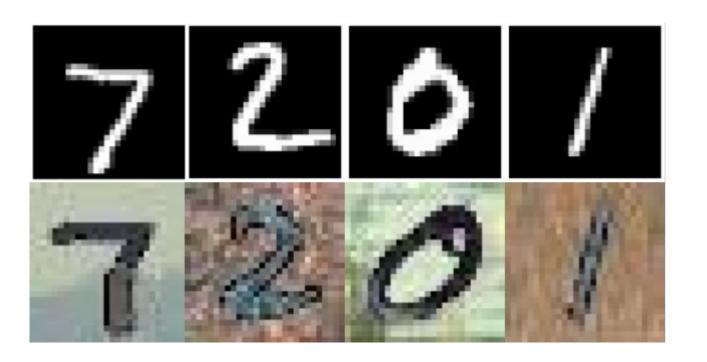
Need to use simulations, similar data, and rely on generalization.

Very common problem:

- Physics: MC simulations of detectors response, space telescopes images
- Medicine: measurements by different instruments
- Object recognition: photos taken by different cameras

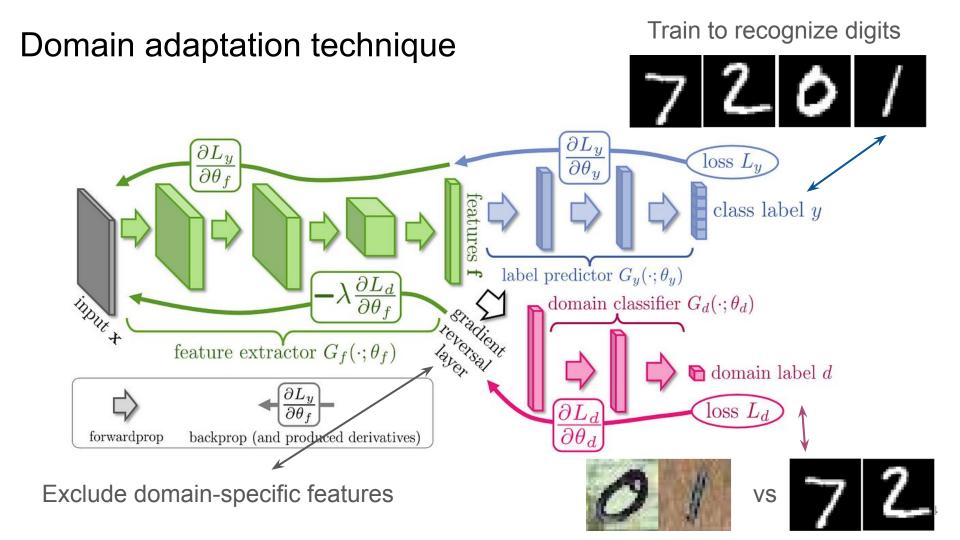
Solution: Domain adaptation

Identify and learn domain-invariant features



Available data for training (source domain)

Data of interest (target domain)



Widely used

- Physics:
 - o CMS@LHC (2405.13778)
 - Cherenkov Telescope Array Large-Sized Telescope (2308.12732)
 - Photometric Classification of Supernovae (1810.06441)
 - Strong Gravitational Lens Analysis (2410.16347)

- Reduces systematic error due to MC-data mismatch
- Enforces common representation space

NNs are bad at extrapolating

We want to fit the function:

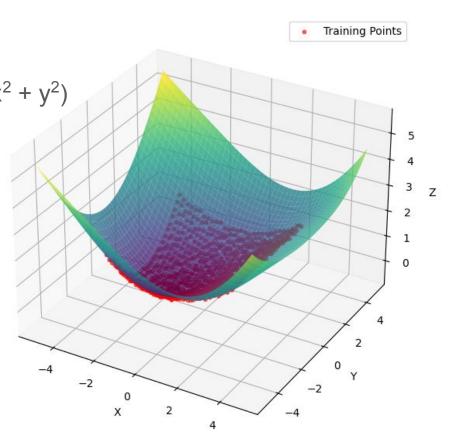
 $f(x,y) = \sin(0.5 * x) * \cos(0.5 * y) + 0.1 * (x^2 + y^2)$

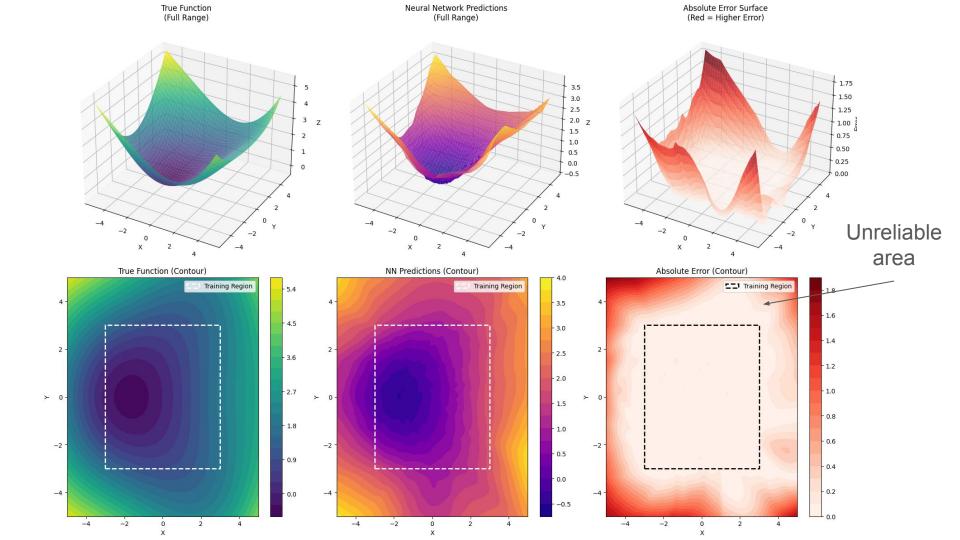
with MLP: 4 hidden layers,

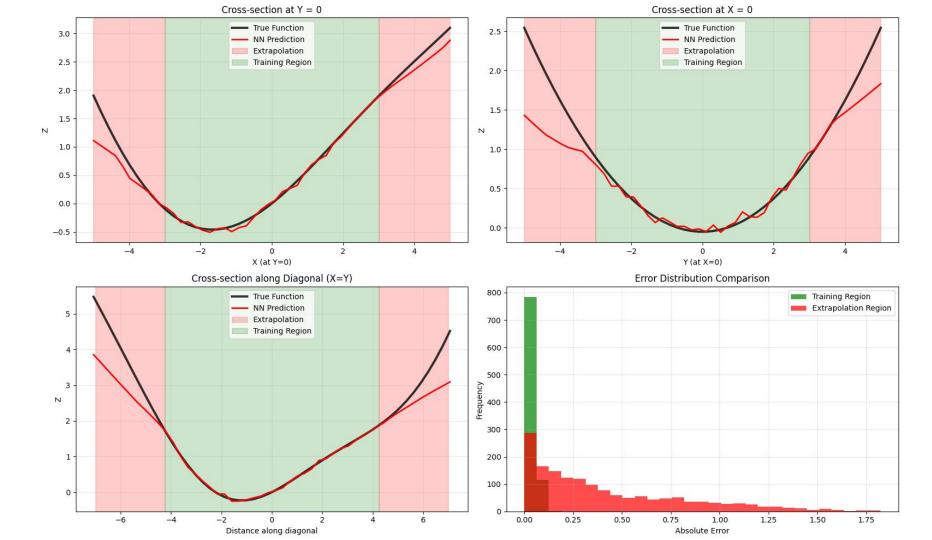
128 neurons per layer.

Training data region: $x,y \in [-3, 3]$

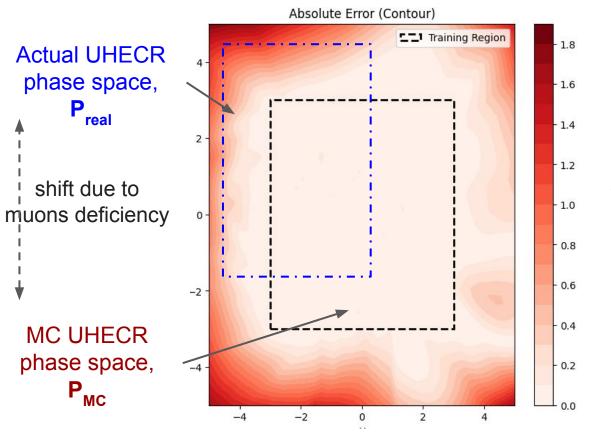
Test data region: x,y out of [-3, 3]







Connection to cross-calibration



NN: $f: P_{MC} \rightarrow E_{expected}$

Calibration (bias correction): $g(f): P_{real} \rightarrow E_{expected}$

But: $\Delta f(P_{real})$ is highly nonlinear, hence calibration must be nonlinear as well

Domain adaptation:

 $P_{real}(z) = P_{MC}(z)$, hence calibration might be simple (linear)