Enhancing the Dynamic Range of Quantum Sensing via Quantum Circuit Learning

Yuichiro Matsuzaki

Chuo University

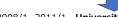
October 30, 2025

Back grounds

2005/4- 2008/12 Waseda University (bachelor degree)

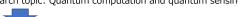
2005/4- 2008/12 University of Tokyo (Master degree), supervised by Akira Shimizu

Research topic: Ouantum computation



2008/1- 2011/1 University of Oxford, supervised by Simon Benjamin

Research topic: Quantum computation and quantum sensing



2011/2 -2011/3 Aalto University (postdoctor), supervised by Mikko Mottonen

Research topic: Quantum computation

Research topic: superconducting gubits, nitrogen vacancy centers in diamond

2019/1 -2023/4 Advanced Industrial Science and Technology (Staff)

Research topic: quantum annealing, NISQ computing, quantum thermodynamics

Chuo University (associate professor) 2023/4 -

collaborators

- Hideaki Kawaguchi (Keio University)
- Yuichiro Mori (Chuo University)
- Takahiko Satoh (Keio University)

Introduction

- Quantum metrology
- 3 Quantum circuit learning (QCL)

Quantum metrology with QCL

Introduction

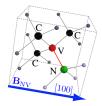
- Quantum metrology
- Quantum circuit learning (QCL)

4 Quantum metrology with QCL

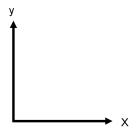
Background

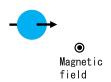
Nitrogen vacancy (NV) centers in diamond c. Degen et al., Rev. Mod. Phys. 89.3 (2017)

- Two electron spins are trapped to form a triplet states
- Long coherence time as a few milliseconds at room temperature
- Manipulation of the spin by microwave pulses
- Initialization by green laser
- Readout of the spin from the photoluminescence
- Coupling with the magnetic field
 ⇒application to magnetic field sensors

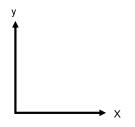


1. Prepare a spin state along x direction

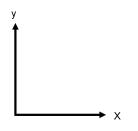




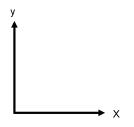
- 1. Prepare a spin state along x direction
- 2. Applying magnetic field along z direction



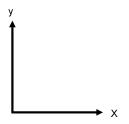
- 1. Prepare a spin state along x direction
- 2. Applying magnetic field along z direction



- 1. Prepare a spin state along x direction
- 2. Applying magnetic field along z direction



- 1. Prepare a spin state along x direction
- 2. Applying magnetic field along z direction
- 3. Readout the spin state



Quantum Sensing Flow with qubits (summary)

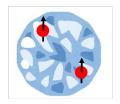
Estimating the value of $\omega=g\mu_b B$ in the Hamiltonian of $H=\frac{\omega}{2}\sigma_z$

- State Preparation by using a green laser and microwave pulse. $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
- 2 Time Evolution with the Hamiltonian
- 3 Readout by photoluminescence
- Repeat 1–3, and obtain measurement results.
- \odot From the measurement results, estimate the value of ω

Sensitivity increases as we increase the number of repetitions (or number of qubits.)

Approach 1

Small diamond (nm) with a low density

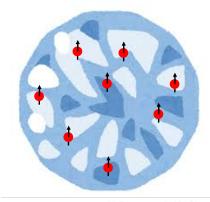


- · Spatial resolution is good such as a few nano meters
- Sensitivity is bad because of a small number of spins

P. Maletinsky, et al. *Nature nanotechnology* 7.5 (2012): 320-324.

Approach 2

Large diamond (mm) with a low density

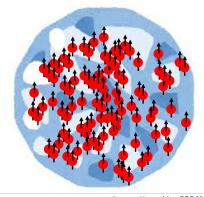


- Spatial resolution is bad such as a few milli meter
- Sensitivity is good because of a large number of spins

M. Fujiwara et al. APL Photonics 8.3 (2023).

Approach 3

Large diamond (mm) with a high density



- Spatial resolution is good such as milli meter
- Sensitivity is good because of a large number of spins
- · Controllability is bad due to the strong coupling between spins

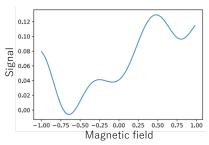
Acosta, Victor M., PRB 80.11 (2009): 115202.

	Conventional 1	Conventional 2	Conventional 3	Our target
Diamond	Small volumeLow density	Large volumeLow density	Small volumeHigh density	Small volumeHigh density
Sensitivity	Bad	Good	Good	Good
Spatial resolution	Good	Bad	Good	Good
Dynamic Range	Good	Good	Bad	Good

Dynamic range is the span of values we can measure without ambiguity.

	Conventional 1	Conventional 2	Conventional 3	Our target
Diamond	Small volumeLow density	Large volumeLow density	Small volumeHigh density	Small volumeHigh density
Sensitivity	Bad	Good	Good	Good
Spatial resolution	Good	Bad	Good	Good
Dynamic Range	Good	Good	Bad	Good

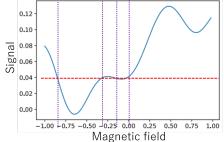
Ex. Bad dynamic range (We cannot uniquely specify the magnetic field)



	Conventional 1	Conventional 2	Conventional 3	Our target
Diamond	Small volumeLow density	Large volumeLow density	Small volumeHigh density	Small volumeHigh density
Sensitivity	Bad	Good	Good	Good
Spatial resolution	Good	Bad	Good	Good
Dynamic Range	Good	Good	Bad	Good

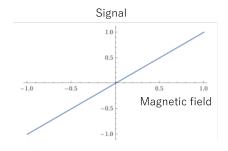
Ex. Bad dynamic range (We cannot uniquely specify the magnetic field)

Ambiguity to estimate magnetic field value exists!



	Conventional 1	Conventional 2	Conventional 3	Our target
Diamond	Small volumeLow density	Large volumeLow density	Small volumeHigh density	Small volumeHigh density
Sensitivity	Bad	Good	Good	Good
Spatial resolution	Good	Bad	Good	Good
Dynamic Range	Good	Good	Bad	Good

Ex. Good dynamic range (We can uniquely specify the magnetic field)



Approaches to use small diamond with dense NV centers

· The previous approach uses Floquet engineering, which works when the pulse operations are done faster than the inverse of the coupling strength $(\tau_{\rm pulse} \ll 1/g)$.

H. Zhou et al., Physical Review X 10, 031003 (2020), H. Zhou et al., Physical Review Letters 131, 220803 (2023),

 \cdot As an alternative approach, we theoretically propose to use quantum circuit learning, which could , in principle, be applied to more general circumstances.

H. Kawaguchi, Y. Mori, T. Satoh, Y. Matsuzaki (2025). arXiv:2505.04958.,

Introduction

- Quantum metrology
- Quantum circuit learning (QCL)

Quantum metrology with QCL

Quantum metrology to measure magnetic fields

Hamiltonian for a single qubit

$$H = \frac{\omega}{2}\hat{\sigma}_z,$$

 $\omega = g\mu_B B$: Zeeman energy.

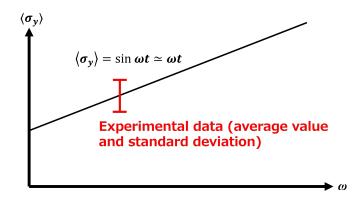
Expectation values

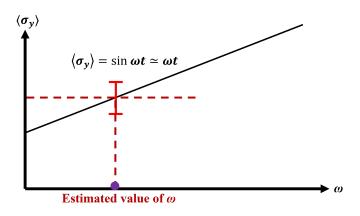
$$\langle \phi(t)|\hat{\sigma}_y|\phi(t)\rangle = \sin(\omega t).$$

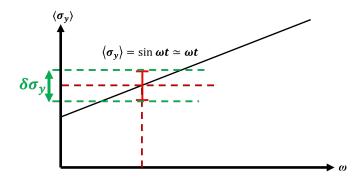
where $|\phi(t)\rangle = e^{-iHt}|+\rangle$ and $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$.

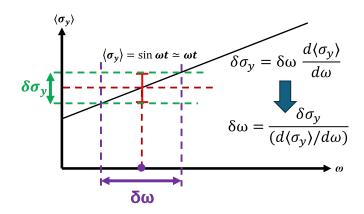
Uncertainty (inverse of the sensitivity)

$$\delta\omega = \frac{\sqrt{\langle \phi(t) | (\delta\hat{\sigma}_y)^2 | \phi(t) \rangle}}{\left| \frac{d\langle \phi(t) | \hat{\sigma}_y | \phi(t) \rangle}{d\omega} \right| \sqrt{M}} = \frac{1}{\sqrt{M}t}$$



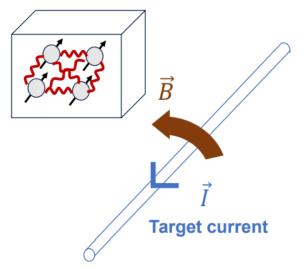






Setup

Using an ensemble of qubits, we measure magnetic fields from electric currents and aim to estimate their strength.



Quantum metrology to measure electric current

Hamiltonian for an ensemble of qubits

$$H = \sum_{j=1}^{L} \frac{h_j I}{2} \hat{\sigma}_z^{(j)},$$

Expectation values

$$\langle \phi(t)|\hat{M}_y|\phi(t)\rangle = \sum_{j=1}^L \sin(h_j It).$$

Sensitivity

where
$$|\phi(t)\rangle=e^{-iHt}|++\cdots+\rangle$$
 and $\hat{M}_y=\sum_{j=1}^L\hat{\sigma}_y^{(j)}$

$$h_j$$
: Relative coupling strength, I : Electric current,

$$|t\rangle |\hat{M}_y|\phi(t)\rangle = \sum_{j=1} \sin(h_j I t).$$

and
$$\hat{M}_y = \sum_{j=1}^L \hat{\sigma}_y^{(j)}$$

$$\delta I = \frac{\sqrt{\langle \phi(t) | (\delta \hat{M}_y)^2 | \phi(t) \rangle}}{\left| \frac{d \langle \phi(t) | \hat{M}_y | \phi(t) \rangle}{dI} \right| \sqrt{M}} = \frac{\sqrt{\sum_{j=1}^L (1 - \sin^2(h_j I t))}}{\left| \sum_{j=1}^L h_j t \cos(h_j I t) \right| \sqrt{M}},$$

(3)

(2)

Introduction

- Quantum metrology
- Quantum circuit learning (QCL)

4 Quantum metrology with QCL

Quantum circuit learning (QCL)

Setup for supervised learning

- · Training data set $(x_i, y_i)_{i=1}^N$ is given with samples N
- \cdot Relationship such as y=f(x) between x and y is assumed
- \cdot Function f_{θ} is used to approximate \widetilde{f} by minimizing the following

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{N} (f_{\boldsymbol{\theta}}(x_i) - y_i)^2.$$
 (4)

where θ is the parameter.

Quantum circuit learning K. Mitarai, Kosuke, et al. " Physical Review A 98.3 (2018): 032309

- · The input state is $e^{-ix_iH}|00\cdots 0\rangle$
- \cdot A parametrized unitary operator U_{θ} is applied with the input state
- \cdot By using an observable \hat{M} , the learning model is defined as

$$f_{\boldsymbol{\theta}}(x) = \langle 0...0 | e^{ixH} U^{\dagger}(\boldsymbol{\theta}) \hat{M} U(\boldsymbol{\theta}) e^{-ixH} | 0...0 \rangle.$$
 (5)

Introduction

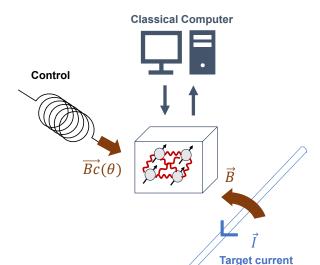
Quantum metrology

3 Quantum circuit learning (QCL)

Quantum metrology with QCL

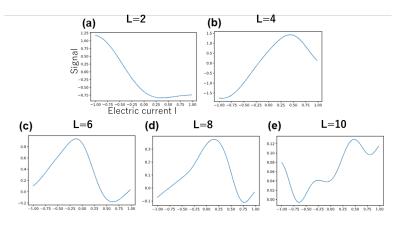
Setup for quantum metrology with QCL

By using an ensemble of qubits, we aim to estimate the strength of the electric currents. However, at high qubit densities, inter-qubit interactions induce multiple oscillations in the signal, which reduces the dynamic range.



Low dynamic range

As the number of qubits increases, the region where the expectation value changes monotonically becomes narrower, indicating a reduction in the dynamic range.



Hamiltonian and input state

Hamiltonian

$$H_{data} = H_I + \sum_{j=1}^{L} \frac{h_j I}{2} \hat{\sigma}_y^{(j)},$$
 (6)

$$H_{I} = \sum_{i,j=1}^{L} J_{ij} (\hat{\sigma}_{x}^{(i)} \hat{\sigma}_{x}^{(j)} + \hat{\sigma}_{y}^{(i)} \hat{\sigma}_{y}^{(j)} + \hat{\sigma}_{z}^{(i)} \hat{\sigma}_{z}^{(j)}), \tag{7}$$

- \cdot H_I is the interaction Hamiltonian and J_{ij} denotes the strength of the interaction
- $holdsymbol{\cdot} h_j = \frac{1}{2} + 2r_j$, where r_j is sampled from the uniform distribution on [0,1).
- $h_j = \frac{1}{2} + 2r_j$, where r_j is sampled from the uniform distribution on [0,1). $J_{ij} = -1 + 2s_{ij}$ where s_{ij} is drawn from a uniform distribution on [0,1).

Input state

$$|\phi_{innut}\rangle = e^{-iH_{data}t}|00\cdots0\rangle,$$

Single-qubit rotation

$$R_x(\theta) = \begin{pmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix},$$

$$R_y(\theta) = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix},$$

$$R_z(\theta) = \begin{pmatrix} e^{-i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{pmatrix}.$$

Parametrized unitary

$$\begin{split} U_x(\theta_1) &= \left(\bigotimes_{i=1}^L R_x^{(i)}(\theta_1)\right) e^{-itH_I}, \ U_y(\theta_2) = \left(\bigotimes_{i=1}^L R_y^{(i)}(\theta_2)\right) e^{-itH_I}, \\ U_z(\theta_3) &= \left(\bigotimes_{i=1}^L R_z^{(i)}(\theta_3)\right) e^{-itH_I}, \end{split}$$

$$H_{gx} = \sum_{j=1}^{L} B_{j}^{x} \hat{\sigma}_{x} + H_{I}, \ H_{gy} = \sum_{j=1}^{L} B_{j}^{y} \hat{\sigma}_{y} + H_{I}, H_{gz} = \sum_{j=1}^{L} B_{j}^{z} \hat{\sigma}_{z} + H_{I}$$

where $B_i^x = B_i^y = B_i^z = B_0 j$ and $B_0 = 1$. The total unitary is as follows

$$U(\boldsymbol{\theta}) = \prod_{i=1}^{D} U^{(d)}(\boldsymbol{\theta}^{(d)}), \tag{9}$$

where
$$U^{(d)}(\boldsymbol{\theta^{(d)}}) = e^{-iH_{gz}t}U_z(\theta_3^{(d)}) \cdot e^{-iH_{gy}t}U_y(\theta_2^{(d)}) \cdot e^{-iH_{gx}t}U_x(\theta_1^{(d)}).$$

Training inputs and target functions

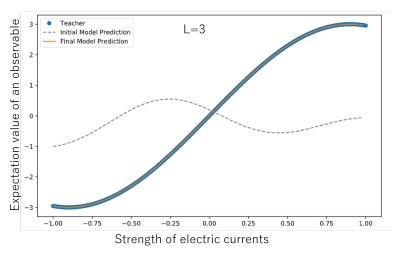
- · Let $\{I_i\}_{i=1}^N$ denote the set of training inputs, where we set N=200.
- \cdot The inputs $\{I_i\}$ are generated by uniformly sampling from the interval [-1,1].
- · The target function f(I) is defined as follows:

$$f(I) = A \cdot L \cdot \sin\left(\frac{\sum_{j} h_{j} It}{B \cdot L}\right),$$
 (10)

where we set A = B = 1.

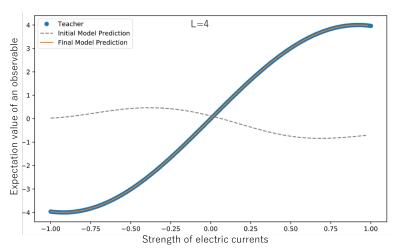
Results with L=3

Dynamic range improvement of quantum sensors through QC



Results with L=4

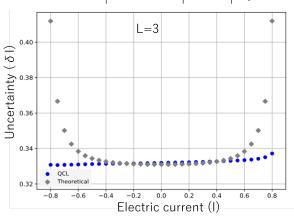
Dynamic range improvement of quantum sensors through QC



Comparison of the sensitivity (L=3)

Let us compare the sensitivity of our method with that of other cases. As a comparison, we consider an imaginary scenario with negligible inter-qubit coupling strength and calculate the sensitivity (theoretical)

with separable states as
$$\delta I = \frac{\sqrt{\langle \phi(t) | (\delta \hat{M}_y)^2 | \phi(t) \rangle}}{\left| \frac{d \langle \phi(t) | \hat{M}_y | \phi(t) \rangle}{dI} \right| \sqrt{M}} = \frac{\sqrt{\sum_{j=1}^L (1 - \sin^2(h_j I t))}}{\left| \sum_{j=1}^L h_j t \cos(h_j I t) \right| \sqrt{M}}$$

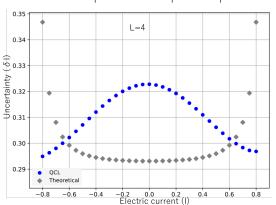


40 / 42

Comparison of the sensitivity (L=4)

Let us compare the sensitivity of our method with that of other cases. As a comparison, we consider an imaginary scenario with negligible inter-qubit coupling strength and calculate the sensitivity (theoretical)

with separable states as
$$\delta I = \frac{\sqrt{\langle \phi(t) | (\delta \hat{M}_y)^2 | \phi(t) \rangle}}{\left| \frac{d \langle \phi(t) | \hat{M}_y | \phi(t) \rangle}{dI} \right| \sqrt{M}} = \frac{\sqrt{\sum_{j=1}^L (1 - \sin^2(h_j I t))}}{\left| \sum_{j=1}^L h_j t \cos(h_j I t) \right| \sqrt{M}}$$



Conclusion and perspective

Conclusion

- · We propose to improve the dynamic range of quantum sensing at high qubit densities by using quantum circuit learning
- · From numerical simulations, we confirm that the dynamic range is improved without a significant reduction of the sensitivity

Perspective

- \cdot We will use a more realistic setup where the Hamiltonian is determined from the positions of qubits and the current lines.
- \cdot Sensitivity can be further improved by an entanglement if we consider a more sophisticated cost function

H. Kawaguchi, Y. Mori, T. Satoh, Y. Matsuzaki (2025). arXiv:2505.04958.,