Weekly meeting

YU-SIANG XIAO (蕭宇翔)

The E_{max} comparison with data and MC-LYSO

- \triangleright Check the MC is correct enough on E_{max} compare to the data.
- \triangleright Draw the E_{max} and ADC_{max} VS Ebeam between MC and Data. PS: data minus 2175ADC for pass through (0,0).
- ➤ Use profile to get the average on Y and the error.
- ➤ The ratio between MC Edep and data ADC is almost a constant ~ 4.811.

The E_{max} comparison with data and MC-PWO

- \triangleright Check the MC is correct enough on E_{max} compare to the data.
- \triangleright Draw the E_{max} and ADC_{max} VS Ebeam between MC and Data. PS: data minus 4825ADC for pass through (0,0).
- ➤ Use profile to get the average on Y and the error.
- ➤ The ratio between MC Edep and data ADC is almost a constant ~ 169.7.

LYSO: Data/MC in different energy

➤(Data-2175)/(MCx4.859)

+ Data-2175

► MCx4.859

Yu-Siang Xiao (NCUHEP, Taiwan)

PbWO₄: Data/MC in different energy

➤(Data-4825)/(MCx169.7)

LYSO: Apply the THR cut on MC

- > Use the study result of threshold(threshold VS DAC per channel and the threshold fluctuation).
- > Apply the cut on MC by convert the Edep of MC to be ADC and cut by threshold.

LYSO: MC after applying the THR. and σTHR

- > LYSO part was trying to apply the cut by the all setting which are used in Feb. 2025 beam test.
- > The magenta color is the threshold for the analysis data
- > The resolution is approach to the data, but still different.
- ➤ The resolution of LYSO is too wired, we want to observe PbWO₄ first...

PbWO₄: Apply the THR cut on MC

- > Use the study result of threshold(threshold VS DAC per channel and the threshold fluctuation).
- > Apply the cut on MC by convert the Edep of MC to be ADC and cut by threshold.

 \triangleright Scaling # of photon receive at SiPM by 3.26 in MC to fit the data ADC_{max}. **THR.: 20.4 MeV** THR.: 45.2 MeV μ THR(DAC) = -3375 + 15.255 X + 0.017 X² HV17E 98MeV HV17E 98MeV HV17E 98MeV 400DAC = 5447ADC, 650DAC = 13723ADCitting of Ch. 34/40 itting of Ch. 34/40 Fitting of Ch. 34/40 MeV = (ADC+1367)/3345447ADC= 20.4 MeV, 13723ADC = 45.2MeV $\frac{\Delta ADC}{ADC}$ = 15.27 \pm 0 % PC = 19.90 ± 0 % E5x5 of Data, HV = 30VFitting of Others Fitting of Others Fitting of Others $\mu = 11609 \pm 347$ $\mu = 1.7330 \pm 0$ $\mu = 18529 \pm 29$ HV17E 98MeV $\sigma = 2282 \pm 82$ ADC 27.96 ± 0 % $\frac{\Delta ADC}{ADC}$ = 19.66 ± 1 % 18.71 ± 0 % Fitting of Ch. 34&40 μ = 16585 \pm 166 0.2 ADC = 16.85 ± 1 % 0.1 HV17E 98MeV HV17E 98MeV HV17E 98MeV Batio 60 Fitting of Ch. 34/40 Fitting of Ch. 34/40 Fitting of Ch. 34/40 $\frac{ADC}{ADC}$ = 32.80 \pm 1 % $\frac{\triangle ADC}{ADC}$ = 27.01 ± 1 % 2.97 ± 2 % Edep_{max} Why? The 98 MeV use 650 to be THR. But, it's Fitting of Others Fitting of Others Fitting of Others more like the 450 case. $\sigma = 5 \# 1$ $\frac{\triangle ADG}{ADC} = 6.21 \pm 1 \%$ ADC = 30.28 ± 0 % ADC = 26.25 ± 0 % Why the ADC_{max} contains 2 peak but Edep_{max} without? 0.2 In the high THR cases, the resolution is wired! Yu-Siang Xiao (NCUHEP, Taiwan)

MC after applying the THR.: multiplicity

- > PbWO part was trying to apply the cut by the all setting which are used in Feb. 2025 beam test.
- > The magenta color is the threshold for the analysis data
- > By the result of multiplicity, the setting in experiment is too large.
- \triangleright When it cut the E_{max} too much, THR. make the resolution unreasonable.
- > Thus, we should remove the <250 MeV data under the 45 MeV threshold.

Exp. THR.

setting

MC after applying the THR. and σ THR

- > PbWO part was trying to apply the cut by the all setting which are used in Feb. 2025 beam test.
- > The magenta color is the threshold for the analysis data
- \triangleright Do the comparison with data, the data is better then MC in THR = 45.2MeV case...

MC Regression

- \triangleright Finish the test code for MC regression, in both case E_{3x3} and E_{5x5} .
- \triangleright The test MC: $E_{beam} = 739 MeV$, THR. = 30MeV
- ➤ The resolution is better than the case without regression, but the peak appears to exceed 3.6%... ③

Summary

- ➤ The ratio between MC Edep and data ADC is almost a constant ~ 4.811 in LYSO, and 169.7 in PWO.
- > The spectrum shape in MC is similar to the data.
- \triangleright The adding of THR make the MC more approach to the data in both detector, and the E_{max} fire ratio could be the principle to remove the high THR. Cases.
- > The resolution of MC is approach to data after cut.
- \triangleright The resolution is better in MC after regression, but the peak is not correct enough(+3%).

To do

- ➤ Data:
 - ➤ Update the calibration part with the harder selection on Emax(Esec /Emax<0.4~0.6) to get the narrow peak.
 - → Energy regression by MC. => Scan all MC case and apply the parameters on data to improve resolution.
 - ➤ Analysis the full setup data(BMx2+LYSO+PbWO).
- > MC:
 - ➤ Use the MC by the B-field to generate the beam (wait for new version!).

END

Std Dev x

The MC condition

- > Simulation content: energy deposit in the crystal array.
- > Particle type: -21(positron)
- > Beam energy: W-200μm-30deg in lns-tn-440e-2.pdf —
- ➤ Beam position: a square at Ch. 28 and surrounding channels.
- ➤ Beam direction: Fix the direction straight to the ZDC.
- > Option: (O) optical photon, (O) circuit simulation.
- > Setup: almost experimental model.

	DMO				
	B.M.2		B.M.1		
e ⁺					ZDC
	Ш				ZDC
	X	Υ	X	Υ	
	bar	bar	bar	bar	

THR. fit of readout board: PbWO₄

- ➤ Kai-Yu did the experiment of PWO readout board + (GAGG-SiPM) scintillator module + LYSO source.
- Fitting function of spectrum: 1. Gaussian(pedestal, 297,395keV, 297 escape peak) 2. Expo. decay(circuit noise). 3. Gasuuian-CDF Aka. error function(threshold decay fitting).
- Fit the relationship of VF-DAC VS THR. and σTHR. The VF-DAC VS THR is fited well by Quad...

Mean THR

- > Extract the mean THR and compare to ADC.
- > Fit the mean THR by linear and quadratic.
 - > Quadratic is better in much cases.
- > Almost case could fit will by quadratic.

Yu-Siang Xiao (NCUHEP, Taiwan)

Mean THR

- > Extract the mean THR and compare to ADC.
- > Fit the mean THR by linear and quadratic.
 - > Quadratic is better in much cases.
- > The mean could fit will by quadratic.
 - ➤ Use quadratic to construct the all channel case and fill them into TH2 to fit by quadratic for total channel.
 - > Average THR of all channel:
 - \rightarrow -3375.410 + 15.255 ADC + 0.017 ADC².

> The width of THR is no relationship.

Fit the σTHR

Fit the σTHR

Back up: X-ray escape peak

- > X-ray escape peak is kind of process that the gamma ray loss some energy by X-ray in crystal.
- ➤ In some crystal scintillator detector paper, they describe the X-ray escape peak in the gamma radiation case.

Text book: G. F. Knoll, Radiation Detection and Measurement, 4th ed. (Wiley, 2010)

Figure 6.19 Part (a) shows the process that gives rise to the X-ray escape peak in the spectrum sketched in part (b).

Figure 11. Simulated spectra of GAGG and LYSO crystals. The X-ray escape peaks are visible in red at around (**a**) 450 keV for LYSO and (**b**) 460 keV for GAGG crystals.

Reference: Matter 2021, 6(4), 43; https://doi.org/10.3390/condmat6040043

ADC to MeV: PWO

> Use the relationship of ADCmax VS Emax and Ebeam VS ADCmax, we can convert the ADC to MeV, and know the MeV of THR and σTHR –ADC.

Yu-Siang Xiao (NCUHEP, Taiwan)

E5x5 of Data, HV = 30V

ADC = 16.85 ± 1

Problem: Apply the THR cut on PbWO₄ MC

- Why does ADCmax show 2 peaks in both MC and data, but Edep_{max} not?
 - In simulation, energy is from crystal, but collected photons are from SiPM.
 - Applying THR cuts makes SiPM channels act separately → sometimes 2 peaks appear in data/MC
- For 98 MeV, THR=650, but it behaves like the 450 case in data?
 - THR(DAC) must be set channel by channel.
 - Try 450 files of data to check.
- In the high THR cases, the resolution is wired!
 - The THR make the data point in a small range.
 - When the THR approach the peak, the resolution of Emax is better...
 - When the THR filter the channels without max tower channel
 - => $\Delta E_{\text{max}} = \Delta E_{5x5}$, and also have a smaller resolution.

