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Figure 1. An overview of potential GWB signals across the frequency spectrum. The light blue
curve shows the prediction for single-field slow-roll inflation with a canonical kinetic term, with tensor-
to-scalar ratio r0.002 = 0.1 [52]. The pink curve shows a GWB from Nambu–Goto cosmic strings, using
“model 2” of the loop network, with a dimensionless string tension of Gµ = 10�11 [53]. The brown curve
shows a GWB from inspiralling supermassive BBHs, with the amplitude and shaded region shown here
corresponding to the common noise process in the NANOGrav 12.5-year data set [54]. The two grey
curves show GWBs generated by first-order phase transitions at the electroweak scale (⇠200 GeV) and
the QCD scale (⇠200 MeV), respectively [55]. The yellow curve shows a GWB generated by stellar-mass
compact binaries, based on the mass distributions and local merger rates inferred by LVK detections [56].
The dashed curves show various observational constraints, as described further in Section 5 (this in-
cludes the PPTA constraint, which intersects the possible NANOGrav SMBBH signal); the dotted curve
shows the integrated constraint from measurements of Neff, which cannot be directly compared with the
frequency-dependent constraint curves but is shown here for indicative purposes.

which is imprinted in the measured strain. Note that this measurement includes non-negligible
selection effects, as qualitatively different backgrounds contribute from different redshift shells
and from different directions.

In this section, we review both astrophysical and cosmological GWBs, providing the
necessary background for the targeted searches discussed in Section 5. We also comment on
the observational properties of the signal which are essential to understand when building an
optimal search method. The various sources are also summarised in Figure 1, which includes
the sensitivity of several GW detection efforts for reference.

3.1. Astrophysical Backgrounds
Astrophysical GWBs are the collection of all GWs generated by astrophysical processes

which are individually unresolved by your GW detector. These can be either individual
subthreshold signals, or they can be so numerous that they add up incoherently and form a
continuous signal in the timestream.

Perhaps the most studied signal in the literature is a background sourced by a collection of
inspiralling and merging compact binary systems. These include black hole binaries, neutron
star binaries, white dwarf binaries, and systems counting a mixed pair of these objects. Black
hole binaries in particular are a vast category of sources, as the mass of each black hole in
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Tidal force field
• metric perturbation

• tidal force field

• dimensionless tidal force field

• tensor Fourier component
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The structure of the paper is as follows. In section 2, we give a review on the decomposition
of GWs into the polarizations and power spectra. In section 3, we present the formalism for
extracting the GW power spectrum from the projected tidal force field in three dimensions.
Our conclusions are given in section 4. Appendix A provides the relation between our
formalism and the E-/B-mode decomposition. In appendix B we present the power spectra of
the projected tidal field before the trace part is subtracted. In appendix C, we show detailed
derivations for the formulas of the power spectra given in section 3.

Throughout this paper, we use the Einstein summation convention, i.e., the summation
is assumed when the same letters appear in the upper and lower indices simultaneously.

2 Gravitational waves in tidal force field

Let us start by defining GWs in the cosmological background. We define GWs by the
transverse and traceless tensor perturbation, hTT

ij (÷, x), of the metric. Together with the
scalar perturbation, the perturbed metric is expressed as

ds2 = ≥a2(÷)
1
[1 + 2�(÷, x)]d÷2 +

)
[1 ≥ 2�(÷, x)]”ij + hTT

ij (÷, x)
*
dxidxj

2
, (2.1)

where ÷ is the conformal time, �(÷, x) the Newton potential, a(÷) the scale factor and ”ij is
Kronecker’s delta, and we assumed that the anisotropic stress is negligible. In the following,
we omit the superscript “TT” from hTT

ij .
The tidal force is described by the geodesic deviation equation, with the force given

in terms of the Riemann tensor. At linear order in cosmological perturbation theory, it is
expressed in terms of the perturbative components ”Rk0j0. For the metric (2.1), it is given by

”Rk
0j0(÷, x) =

5
�≠≠(÷, x) + 2H(÷)�≠(÷, x) + 1

3≠
2�(÷, x)

6
”k

j + ”kiFij(÷, x) , (2.2)

where H Ò aH is the conformal Hubble parameter and Fij(÷, x) is the traceless part that
defines the tidal field and given by

Fij(÷, x) Ò

3
ˆiˆj ≥

1
3”ij≠

2
4

�(÷, x) ≥
1
2

Ë
h≠≠

ij(÷, x) + H(÷)h≠
ij(÷, x)

È
. (2.3)

Below we focus on the traceless components. To evaluate the cosmological tidal e�ect, it
is convenient to introduce a dimensionless tidal field, defined by

fij(÷, x) Ò
Fij(÷, x)

4fiGfl̄(÷)a2 = sij(÷, x) + tij(÷, x) , (2.4)

where

sij(÷, x) Ò
1

4fiGfl̄a2

3
ˆiˆj ≥

1
3”ij≠

2
4

�(÷, x) =
3

ˆiˆj

≠2 ≥
1
3”ij

4
”m(÷, x), (2.5)

tij(÷, x) Ò ≥
1

8fiGfl̄a2

Ë
h≠≠

ij(÷, x) + H(÷)h≠
ij(÷, x)

È
, (2.6)

with fl̄ being the background energy density and ”m(÷, x) the matter density contrast. Note
that we have assumed the scale of our interest to be small enough so that the Newtonian
approximation is valid. In the real Universe, this should be valid on scales . 500 Mpc.
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Due to the scalar potential term, it is hard to extract the tensor part, GWs, from
observations because it is subdominant, as estimated below. One of the goals of this paper
is to formulate a method to extract the tensor part from the tidal field based solely on
observables. As we intend to develop the basic formalism, in this paper we assume an ideal
situation for observation and ignore all possible observational errors.

2.1 Polarizations of gravitational waves

We consider the tidal field in Fourier space, Xij(÷, k) =
1

d3x Xij(÷, x)e≠ik·x (X = {s, t or h}).
The scalar contribution, sij(÷, k), is given by sij(÷, k) =

)
k̂ik̂j ≥ (1/3)”ij

*
”m(÷, k). We

decompose GWs in Fourier space into the right-handed (R) and left-handed (L) polarizations
(e.g., [80, 81]),

hij(÷, k) = e(R)
ij (k̂)h(R)(÷, k) + e(L)

ij (k̂)h(L)(÷, k), (2.7)

e(R,L)
ij (k̂) = 1

≠
2

)
e(+)

ij (k̂) ± i e(Õ)
ij (k̂)

*
, (2.8)

where hat denotes a unit vector, for instance k̂ = k/k, and e(+)
ij = 1◊

2
2
e(1)

i e(1)
j ≥ e(2)

i e(2)
j

5

and e(Õ)
ij = 1◊

2
2
e(1)

i e(2)
j + e(2)

i e(1)
j

5
, with e(1) and e(2) being arbitrary orthonormal vectors

spanning two-dimensional space orthogonal to k̂. We assume the set (e(1), e(2), k̂) forms a
right-handed Cartesian basis. All the polarization tensors are defined to be orthonormal,
e(p)

ij eij
(pÕ) = ”p

pÕ for p, pÔ = {+, Ò}, and e(p)
ij ēij

(pÕ) = ”p
pÕ for p, pÔ = {R, L}, where a bar stands

for the complex conjugate.
In passing, we note that it is useful to express the Fourier component of the dimensionless

tidal field tij given by (2.6) in terms of hij . Assuming k © H, we have tij Ô hÔÔ
ij =

≥k2hij . Hence

tij(÷, k) = k2

3H2 hij(÷, k) , (2.9)

where we have used the background Friedmann equation for a spatially flat universe, 8ˆGfīa2 =
3H

2. Noting that sij = O(”m), the tensor contribution can be comparable to the scalar one
only when hij ◊ (H2/k2)”m. On 10 Mpc scale, which is approximately the scale of our interest,
we have ”m = O(1). This means we need hij ◊ 10≠4 to dominate over the scalar contribution
on that scale, which seems practically impossible to attain. Conversely, we need a method to
cleanly separate out the scalar contribution if we are to detect the tensor part in the tidal field.

We now define the symmetric curl field of a given tensor field Xij [82] by putting the
asterisk on the left-hand side of the symbol, úXij , as

úXij(÷, x) ∫
1
2

)
fl mn
i ‘mXnj + fl mn

j ‘mXni

*
, (2.10)

where fli
mn = ”ijfljmn and fljmn is the totally anti-symmetric unit tensor with fl123 = 1. By

taking the spatial derivative of eq. (2.7), we get

‘mhnj(÷, x) =
6

d3k

(2ˆ)3 i km

3
e(R)

nj (k̂)h(R)(÷, k) + e(L)
nj (k̂)h(L)(÷, k)

4
eik·x. (2.11)
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L-R helicity (polarization) decomposition

• define * operation

then,

   except for the factor k, * operation transforms R → R, L → – L   

    * operation can be used to detect parity violation (PV) in GWs

(X	=	s  for scalar, X	=	h  for tensor)

scalar perturbation, the perturbed metric is expressed as

ds2 = �a2(⌘)
⇣
[1 + 2 (⌘,x)]d⌘2 +

�
[1 � 2 (⌘,x)]�ij + hTT

ij (⌘,x)
 
dxidxj

⌘
, (2.1)

where ⌘ is the conformal time,  (⌘,x) the Newton potential, a(⌘) the scale factor and �ij is
Kronecker’s delta, and we assumed that the anisotropic stress is negligible. In the following,
we omit the superscript “TT” from hTT

ij .
The tidal force is described by the geodesic deviation equation, with the force given

in terms of the Riemann tensor. At linear order in cosmological perturbation theory, it is
expressed in terms of the perturbative components �Rk

0j0. For the metric (2.1), it is given
by

�Rk
0j0(⌘,x) =


 00(⌘,x) + 2H(⌘) 0(⌘,x) +

1

3
r

2 (⌘,x)

�
�kj + �kiFij(⌘,x) , (2.2)

where H ⌘ aH is the conformal Hubble parameter and Fij(⌘,x) is the traceless part that
defines the tidal field and given by

Fij(⌘,x) ⌘

✓
@i@j �

1

3
�ijr

2

◆
 (⌘,x) �

1

2

⇥
h00
ij(⌘,x) + H(⌘)h0

ij(⌘,x)
⇤

. (2.3)

Below we focus on the traceless components. To evaluate the cosmological tidal e↵ect, it is
convenient to introduce a dimensionless tidal field, defined by

fij(⌘,x) ⌘
Fij(⌘,x)

4⇡G⇢̄(⌘)a2
= sij(⌘,x) + tij(⌘,x) , (2.4)

where

sij(⌘,x) ⌘
1

4⇡G⇢̄a2

✓
@i@j �

1

3
�ijr

2

◆
 (⌘,x) =

✓
@i@j
r2

�
1

3
�ij

◆
�m(⌘,x), (2.5)

tij(⌘,x) ⌘ �
1

8⇡G⇢̄a2
⇥
h00
ij(⌘,x) + H(⌘)h0

ij(⌘,x)
⇤

, (2.6)

with ⇢̄ being the background energy density and �m(⌘,x) the matter density contrast. Note
that we have assumed the scale of our interest to be small enough so that the Newtonian
approximation is valid. In the real Universe, this should be valid on scales . 500 Mpc.
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contribution on that scale, which seems practically impossible to attain. Conversely, we need
a method to cleanly separate out the scalar contribution if we are to detect the tensor part
in the tidal field.

We now define the symmetric curl field of a given tensor field Xij [82] by putting the
asterisk on the left-hand side of the symbol, ⇤Xij , as

⇤Xij(⌘,x) ⌘
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j @mXni
�
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where ✏imn = �ij✏jmn and ✏jmn is the totally anti-symmetric unit tensor with ✏123 = 1. By
taking the spatial derivative of Eq. (2.7), we get
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i km
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e(R)
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i
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Then the curl of the tidal field reads
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(2⇡)3
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i
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In the above we used the identities, i ✏ mn
i kme(R,L)

nj = ± k e(R,L)
ij [83]. Note that apart from

the flip of sign of the L-mode, ⇤hij is essentially equivalent to the spatial derivative of hij .
Since the curl of the scalar component is identically zero, the above equation states that if
we detect the non-zero curl component of the tidal force field at large scales where linearized
theory give an accurate prediction, it provides a direct evidence of the signal of gravitational
waves.
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Due to the scalar potential term, it is hard to extract the tensor part, GWs, from
observations because it is subdominant, as estimated below. One of the goals of this paper
is to formulate a method to extract the tensor part from the tidal field based solely on
observables. As we intend to develop the basic formalism, in this paper we assume an ideal
situation for observation and ignore all possible observational errors.

2.1 Polarizations of gravitational waves

We consider the tidal field in Fourier space, Xij(÷, k) =
1

d3x Xij(÷, x)e≠ik·x (X = {s, t or h}).
The scalar contribution, sij(÷, k), is given by sij(÷, k) =

)
k̂ik̂j ≥ (1/3)”ij

*
”m(÷, k). We

decompose GWs in Fourier space into the right-handed (R) and left-handed (L) polarizations
(e.g., [80, 81]),

hij(÷, k) = e(R)
ij (k̂)h(R)(÷, k) + e(L)

ij (k̂)h(L)(÷, k), (2.7)

e(R,L)
ij (k̂) = 1

≠
2

)
e(+)

ij (k̂) ± i e(Õ)
ij (k̂)

*
, (2.8)

where hat denotes a unit vector, for instance k̂ = k/k, and e(+)
ij = 1◊

2
2
e(1)

i e(1)
j ≥ e(2)

i e(2)
j

5

and e(Õ)
ij = 1◊

2
2
e(1)

i e(2)
j + e(2)

i e(1)
j

5
, with e(1) and e(2) being arbitrary orthonormal vectors

spanning two-dimensional space orthogonal to k̂. We assume the set (e(1), e(2), k̂) forms a
right-handed Cartesian basis. All the polarization tensors are defined to be orthonormal,
e(p)

ij eij
(pÕ) = ”p

pÕ for p, pÔ = {+, Ò}, and e(p)
ij ēij

(pÕ) = ”p
pÕ for p, pÔ = {R, L}, where a bar stands

for the complex conjugate.
In passing, we note that it is useful to express the Fourier component of the dimensionless

tidal field tij given by (2.6) in terms of hij . Assuming k © H, we have tij Ô hÔÔ
ij =

≥k2hij . Hence

tij(÷, k) = k2

3H2 hij(÷, k) , (2.9)

where we have used the background Friedmann equation for a spatially flat universe, 8ˆGfīa2 =
3H

2. Noting that sij = O(”m), the tensor contribution can be comparable to the scalar one
only when hij ◊ (H2/k2)”m. On 10 Mpc scale, which is approximately the scale of our interest,
we have ”m = O(1). This means we need hij ◊ 10≠4 to dominate over the scalar contribution
on that scale, which seems practically impossible to attain. Conversely, we need a method to
cleanly separate out the scalar contribution if we are to detect the tensor part in the tidal field.

We now define the symmetric curl field of a given tensor field Xij [82] by putting the
asterisk on the left-hand side of the symbol, úXij , as

úXij(÷, x) ∫
1
2

)
fl mn
i ‘mXnj + fl mn

j ‘mXni

*
, (2.10)

where fli
mn = ”ijfljmn and fljmn is the totally anti-symmetric unit tensor with fl123 = 1. By

taking the spatial derivative of eq. (2.7), we get

‘mhnj(÷, x) =
6

d3k

(2ˆ)3 i km

3
e(R)

nj (k̂)h(R)(÷, k) + e(L)
nj (k̂)h(L)(÷, k)

4
eik·x. (2.11)
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L-R helicity (polarization) decomposition
• define * operation,

then,

R

L

except for the factor k, *op transforms R → R, L → −L

* can be used to detect parity violation (PV) in GWs

6

Creminelli+ (2014),               
Alexander & Martin (2005)



2-point functions

• cosmological GW 2-pt functions exhibit unique time-dependence
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GWs=tidal force=tidal deformation
• GWs are frozen (static in our timescale)                                     

= locally identical to scalar (Newtonian) tidal force 
• The difference is its space-time dependence

• different correlation functions redshift z

z~1

z=0

GW

- in linear theory, Newton 
potential y(t,x) is almost 
constant in time: 
&#(')&#('′) ~ time-indep

GWs propagate: 

ℎ#(')ℎ#('′) ~ time-dep
~ )&(+) ~ )'(&, &%; +)

4



Effects of GWs on large-scale structure
• At 1st order, the density perturbation is not affected by GWs
• 2nd-order density field induced by the coupling between GWs 

and scalar tidal fields :

• cf.

• Shapes of galaxies, γij, are affected by GW at 1st order as an 
instantaneous response effect

0 % 1 = 3((&, 1)ℎ'(
)*+,((&, 1-)

4'4(
4% 0./*01

2 (1)

0 % 1 = 4
7
7(1)
7(1-)

4'4(
4% 0)*+,

2 (1) 4'4(4% 0./*01
2 (1)

k-dependent GWs at 
init time

Scalar tidal 
field

long mode

Dai+ (2013), Schmidt+ (2014), 
Biagetti & Orlando (2020), 
Akitsu, Li & Okumura (2023) 

short mode



• (scalar) tidal fields statistically align 
galaxies

• GWs also align with galaxies

Intrinsic Alignment of galaxies

Kij

8'(3 = 943 :'(
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The structure of the paper is as follows. In section 2, we give a review on the decomposition
of GWs into the polarizations and power spectra. In section 3, we present the formalism for
extracting the GW power spectrum from the projected tidal force field in three dimensions.
Our conclusions are given in section 4. Appendix A provides the relation between our
formalism and the E-/B-mode decomposition. In appendix B we present the power spectra of
the projected tidal field before the trace part is subtracted. In appendix C, we show detailed
derivations for the formulas of the power spectra given in section 3.

Throughout this paper, we use the Einstein summation convention, i.e., the summation
is assumed when the same letters appear in the upper and lower indices simultaneously.

2 Gravitational waves in tidal force field

Let us start by defining GWs in the cosmological background. We define GWs by the
transverse and traceless tensor perturbation, hTT

ij (÷, x), of the metric. Together with the
scalar perturbation, the perturbed metric is expressed as

ds2 = ≥a2(÷)
1
[1 + 2�(÷, x)]d÷2 +

)
[1 ≥ 2�(÷, x)]”ij + hTT

ij (÷, x)
*
dxidxj

2
, (2.1)

where ÷ is the conformal time, �(÷, x) the Newton potential, a(÷) the scale factor and ”ij is
Kronecker’s delta, and we assumed that the anisotropic stress is negligible. In the following,
we omit the superscript “TT” from hTT

ij .
The tidal force is described by the geodesic deviation equation, with the force given

in terms of the Riemann tensor. At linear order in cosmological perturbation theory, it is
expressed in terms of the perturbative components ”Rk0j0. For the metric (2.1), it is given by

”Rk
0j0(÷, x) =

5
�≠≠(÷, x) + 2H(÷)�≠(÷, x) + 1

3≠
2�(÷, x)

6
”k

j + ”kiFij(÷, x) , (2.2)

where H Ò aH is the conformal Hubble parameter and Fij(÷, x) is the traceless part that
defines the tidal field and given by

Fij(÷, x) Ò

3
ˆiˆj ≥

1
3”ij≠

2
4

�(÷, x) ≥
1
2

Ë
h≠≠

ij(÷, x) + H(÷)h≠
ij(÷, x)

È
. (2.3)

Below we focus on the traceless components. To evaluate the cosmological tidal e�ect, it
is convenient to introduce a dimensionless tidal field, defined by

fij(÷, x) Ò
Fij(÷, x)

4fiGfl̄(÷)a2 = sij(÷, x) + tij(÷, x) , (2.4)

where

sij(÷, x) Ò
1

4fiGfl̄a2

3
ˆiˆj ≥

1
3”ij≠

2
4

�(÷, x) =
3

ˆiˆj

≠2 ≥
1
3”ij

4
”m(÷, x), (2.5)

tij(÷, x) Ò ≥
1

8fiGfl̄a2

Ë
h≠≠

ij(÷, x) + H(÷)h≠
ij(÷, x)

È
, (2.6)

with fl̄ being the background energy density and ”m(÷, x) the matter density contrast. Note
that we have assumed the scale of our interest to be small enough so that the Newtonian
approximation is valid. In the real Universe, this should be valid on scales . 500 Mpc.
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Catelan+ (2000),               
Hirata & Seljak (2004), 
Okumura & Taruya (2020) 

TNG Simulations image modified by Taruya-Okumura

• (scalar) tidal fields align galaxies 

• GWs also align galaxies

Intrinsic Alignment of galaxies

Schmidt, Pajer & Zaldarriaga, 1312.5616

Akitsu, Li & Okumura, 2209.06226 
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• Observable = projected tidal field
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Figure 1. Illustration of the coordinates adopted in the text. The direction of ẑ is the observer’s line
of sight, and the orthonormal vectors x̂, ŷ and ẑ form a right-handed Cartesian basis. The direction
of propagation of a GW is specified by e(3) = k̂, tilted from the line of sight by an angle ✓k, and
e(1), e(2) and e(3) form another right-handed Cartesian basis. Here e(1) and x̂ are chosen to coincide
with each other, e(1) = x̂. The components of the basis vectors projected onto the celestial sphere

are denoted by capital letters such as e(1)A .

system, the components of k̂ may be expressed as k̂ = (sin ✓k cos �k, sin ✓k sin �k, cos ✓k). For
convenience, one can rotate the axes by ⇡/2 � �k to make the new basis vector x̂ coincide
with e(1). Namely, we choose the x-axis such that x̂ = e(1). Then the components, e(1), e(2)

and k̂, respectively, have in the Cartesian coordinates,

e(1)i = (1, 0, 0), e(2)i = (0, cos ✓k, � sin ✓k), k̂i = (0, sin ✓k, cos ✓k). (3.1)

Then the components of the basis vectors defined/projected on the celestial sphere in two
dimensions are given by

e(1)A = x̂A = (1, 0), e(2)A = ŷA cos ✓k = (0, cos ✓k), k̂A = ŷA sin ✓k = (0, sin ✓k). (3.2)

where the capital Latin indices denote quantities on the two-dimensional celestial sphere.
Figure 1 is an illustration of the coordinate system.

Note that the tidal force field is characterized by the second time derivative, a�1(ah0
ij)

0,

rather than hij itself, as shown in Eq. (2.2). For the scale of our interest, k2
� H

2, we can
approximate it by h00

ij . Thus, the power spectra relevant to observations are those of the
second time derivative of GWs, and for instance the power spectrum of given fields X and Y ,
hXijYiji = (2⇡)3�D(k+k0)PXY (k), should be replaced by hX̃ij Ỹiji = (2⇡)3�D(k+k0) ePXY (k),

where X̃ = X 00 and ePXY = k4PXY (k). In the following, however, we consider hij itself. This
means all the resulting formulas should be multiplied by k4 when they are to be considered
as the tidal force field.
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fij	(η,	x) 

fAB	(η,	x) 

Line-of-sight component

angular component



Extracting parity-violating GW components
• Conventional method: E/B-mode decomposition

• New “local” method (complimentary to E/B method)

E-mode = scalar + tensor
B-mode = tensor

3.1 Power spectra of projected tidal force field

Since only the tidal field projected on the sphere perpendicular to the line of sight is observ-
able, we consider the projected field of GWs, hAB(⌘,x) in real space or hAB(⌘,k) in Fourier
space. Note that the vectors x and k are in three dimensions. We assume that we can mea-
sure the three-dimensional positions of galaxies via, say, measuring redshifts in spectroscopic
galaxy surveys. The main purpose of this section is to derive formulas that can be used to
identify the GW contribution in the tidal field solely from the projected field hAB.

Let us first note that the tidal force field relevant to observables is a traceless part in
two dimensions,

fT
AB(⌘,x) = sTAB(⌘,x) + tTAB(⌘,x) , (3.3)

where a quantity X with the superscript T stands for XT
AB = XAB �

1
2�ABXC

C . In appendix
B we present the power spectra of the projected field before the trace part is subtracted.

It is straightforward to compute the power spectrum of the projected scalar tidal field.
The resulting spectrum is obtained as

⌦
sT,AB(⌘,k)sTAB(⌘0,k0)

↵
=

1

2
(2⇡)3�D(k + k0)k4(1 � µ2

k)
2P (⌘, ⌘0, k), (3.4)

where µk = k̂·ẑ and h (⌘,k) (⌘0,k0)i = (2⇡)3�D(k+k0)P (⌘, ⌘0, k) with  (⌘,k) ⌘  (⌘,k)/4⇡G⇢̄a2.
Let us then compute the power spectra of the projected GWs. Those with subtracting the
trace part are given by

⌦
hT,AB(⌘,k)hT

AB(⌘0,k0)
↵

=
1

8
(2⇡)3�D(k + k0)(1 + 6µ2

k + µ4
k)Ph(⌘, ⌘

0, k), (3.5)

where we used the relation,
P

�=R,L e(�)AB ēAB
(�) = (1+µ2

k)
2/2. Taking the average over µk leads

to the monopole component, 7
15Ph(⌘, ⌘0, k). However, it is hard to extract the GW signals

via these expressions as the scalar potential term,
⌦
sT,AB(⌘,k)sTAB(⌘0,k0)

↵
, dominates the

signal, which prevent us to extract out the GW contribution directly. In practice the scalar
contribution is the one commonly measured in the analysis of intrinsic alignment of galaxy
shapes (see discussion in section 4 below). In appendix A we show how they are related to
the power spectra of E- and B-modes.

3.2 Power spectra of divergence and curl of projected tidal force field

We now consider to isolate the GW contribution from the observed projected tidal force field.
We introduce the two-dimensional vector fields, XA and ⇤XA, constructed respectively by
taking the divergence and curl of the original projected field XAB(⌘,x) (X = {s, t (or h)})
as

XA(⌘,x) ⌘ @BXBA(⌘,x), ⇤XA(⌘,x) ⌘ ✏BC@BXCA(⌘,x), (3.6)

where ✏BC is the Levi-Civita symbol defined in two dimensions. Similarly, the two-dimensional
vector fields after subtracting the trace part, XT

A and ⇤XT
A , are obtained from XT

AB(⌘,x) as

XT
A(⌘,x) ⌘ @BXT

BA(⌘,x), ⇤XT
A(⌘,x) ⌘ ✏BC@BXT

CA(⌘,x). (3.7)

Note that ⇤sA = 0 but ⇤sTA 6= 0. That is, unlike the three-dimensional case, the curl of the
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1
2�ABXC

C . In appendix
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↵
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2
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↵
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extracting PVGW components

10

• conventional method: E/B decomposition
E-mode = scalar + tensor
B-mode = tensor

non-zero <B2>  = GW
non-zero <E·B> = PVGW

• new “local” method (complimentary to E/B method)

E/B modes: defined globally

∙∙∙free from scalar components

https://background.uchicago.edu/~whu/index.html

non-zero <B2> = GW
non-zero <E・B> = PVGW

E/B-modes: defined globally

∗ "! #, % ≡ '" ∗ ""
! #, % (#$'"'#"$"

! → Pseudo-scalar, free from
     scalar components∇・∇ × X

∇ × X∇・X



2-pt functions of projected tidal fields
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“Overlap Reduction Function” for < XY >

div h rot h div ∙ rot h

≠ 0 if   PV

E

The above 2-pt functions can be obtained by local operations 

• 2-pt fcns in terms of GW amplitude h

6

4

2-point functions of projected tidal fields
• 2-point functions in terms of GW amplitude h



• In principle, it is possible to distinguish tensor from scalar contributions by 
template matching applied to the data.
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Figure 2. The kernels (ORFs) in the integrands of the correlation functions for the scalar and tensor
(GW) components of the projected tidal force field. The upper and lower rows show the ORFs for
the scalar and tensor tidal fields, respectively. Di↵erent columns show the results for several di↵erent
values of kr and di↵erent lines show those for di↵erent values of k�⌘ = k(r0

� r).

the contributions of the scalar and tensor tidal forces by template matching applied to the
projected tidal field data in three dimensions.

Figure 3 shows the two ORFs for signals of GWs that can be directly extracted from
observation. The upper row shows the result for the divergence of the curl of the projected
tidal tensor field, �⇤h⇤h. Although the overall behavior of the kernel �⇤h⇤h is similar to that
of �hh, GW signals can be directly extracted from this quantity since ⇤s ⌘ 0. The lower row
shows the ORF for parity violation signals of the tidal tensor field. It becomes zero at the
✓ = 0 and k�⌘ = 0 limit, unlike the ORFs for the other auto-correlations.

Finally let us comment on the corresponding quantities defined in terms of the dimen-
sionless tidal force field tij ⇡ (k2/3H

2)hij instead of hij . Under the assumption that the
universe is matter-dominated, we have k2/H

2
/ a(⌘). Hence this scale factor dependence

cancels the 1/a(⌘) dependence of hij . This means that the amplitude of tij at the epoch of
matter-radiation equality is equal to that of tij at any later times. In the actual universe, be-
cause of the dark energy contribution, this estimate is no longer accurate, but it nevertheless
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2-pt functions of projected tidal fields
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“Overlap Reduction Function” for < XY >

div h rot h div ∙ rot h
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The above 2-pt functions can be obtained by local operations 

• 2-pt fcns in terms of GW amplitude h
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Figure 3. Similar with figure 2 but for the auto-correlation function of the curl of the projected
GWs (upper row) and its cross-correlation function with the divergence (lower row).

gives a fairly good estimate of the amplitude of tij .

4 Conclusions and discussion

Gravitational waves (GWs) are known to be imprinted into the tidal force field as tensor
perturbations. It can be estimated by defining E-/B-modes and computing their power
spectra. In this paper, we have developed a new technique to estimate the contribution
of GWs in the projected tidal field. We introduced two two-dimensional vector fields in
three dimensions constructed by taking the divergence and curl of the projected tidal field,
denoted by hA and ⇤hA, respectively. The auto-power spectra naturally contain contributions
of the scalar-type tidal field. We found that further taking the divergence of ⇤hA, which is
a pseudo-scalar quantity, enable us to remove the scalar contribution and thus to single out
the GW contribution. The cross-correlation between hA and ⇤hA is free from the scalar
tidal contribution, and it is non-vanishing only if parity is violated. Thus signals of parity
violation in the GW background can be extracted from this cross-correlation, if any. It
roughly corresponds to measuring the cross-power spectrum of E and B-modes, but these
are complementary to each other in the sense that our estimator can be naturally defined
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Polarization degrees of freedom of GWs
Mikura, Okumura & Sasaki (2025) [arXiv:2507.23302]

2 Power spectra of gravitational waves

We define GWs as the spatial perturbation obtained after imposing the synchronous gauge h0µ = 0 on the
tensor perturbation hµω . The line element is then given by6

ds2 = a2(ω)
[
→dω2 + (εij + hij) dx

i
dxj

]
, (2.1)

where a is the scale factor and ω is the conformal time. In three-dimensional space, the tensor perturbation hij
can accommodate up to six helicity modes [61,62], that can be labeled by an index ϑ = {±2,±1, b, ϖ} in the
chiral basis. The last two modes have helicity-zero and are called breathing and longitudinal polarizations,
respectively. In the Fourier space, the tensor perturbation can be written as

hij(ω,k) =
∑

ε

e(ε)ijh(ε)(ω,k) , (2.2)

where the polarization tensors e(ε)ij are defined as [69]

e(±2)
ij :=

1

2

[(
e(1)i ↑ e(1)j → e(2)i ↑ e(2)j

)
↓ i

(
e(1)i ↑ e(2)j + e(2)i ↑ e(1)j

)]
, (2.3)

e(±1)
ij :=

1

2

[(
e(1)i ↑ k̂j + k̂i ↑ e(1)j

)
↓ i

(
e(2)i ↑ k̂j + k̂i ↑ e(2)j

)]
, (2.4)

e(b)ij :=
1↔
2

(
e(1)i ↑ e(1)j + e(2)i ↑ e(2)j

)
, (2.5)

e(ϑ)ij := k̂i ↑ k̂j . (2.6)

Here, k̂ denotes a unit vector pointing to the propagation of the tensor perturbation, and e(1) and e(2) are
two orthonormal vectors. The set of unit vectors {e(1), e(2), k̂} forms the right-handed Cartesian coordinate
system. One can easily show that the above polarizations satisfy

e(ε)ij ē
(ε→)ij

= εεε
→
, (2.7)

where the bar denotes the complex conjugate and the polarization tensors with upper indices are the same as
those with lower indices, namely e(ε)ij = e(ε)ij . We use the Einstein summation convention throughout the
paper.

The temporal power spectrum of GWs, Ph(ω, ω→, k), is defined by the ensemble average as
〈
hij(ω,k)hij(ω

→,k→
)
〉
= (2ϱ)3 ε(3)D (k + k→

)Ph(ω, ω
→, k) , (2.8)

where ε(n)D is the n-dimensional Dirac delta function. Under the assumption of an isotropic stochastic GW
background, one expects that the cross-power spectra between different helicity modes vanish, thereby giving
the following power spectrum for each polarization:

〈
h(ε)(ω,k)h(ε)(ω

→,k→
)
〉
= (2ϱ)3 ε(3)D (k + k→

)εεε→P (ε)
(ω, ω→, k) . (2.9)

For later convenience, let us define tensor- and vector-type power spectra as

P (T)
:= P (+2)

+ P (↑2) , P (V)
:= P (+1)

+ P (↑1) , (2.10)

6The tidal force distorting galaxy shapes can be described by the geodesic deviation. With the metric (2.1), the tidal field tij is
given by tij = ωRi0j0 →

(
h→→
ij +Hh→

ij

)
with H := a→/a being the conformal Hubble parameter. For modes satisfying cωk ↑ H, we

roughly have tij ↓ c2ωk
2hij , which implies that correlations of the tidal field are directly related to those of the tensor perturbation.

3

2 Power spectra of gravitational waves

We define GWs as the spatial perturbation obtained after imposing the synchronous gauge h0µ = 0 on the
tensor perturbation hµω . The line element is then given by6

ds2 = a2(ω)
[
→dω2 + (εij + hij) dx

i
dxj

]
, (2.1)

where a is the scale factor and ω is the conformal time. In three-dimensional space, the tensor perturbation hij
can accommodate up to six helicity modes [61,62], that can be labeled by an index ϑ = {±2,±1, b, ϖ} in the
chiral basis. The last two modes have helicity-zero and are called breathing and longitudinal polarizations,
respectively. In the Fourier space, the tensor perturbation can be written as

hij(ω,k) =
∑

ε

e(ε)ijh(ε)(ω,k) , (2.2)

where the polarization tensors e(ε)ij are defined as [69]

e(±2)
ij :=

1

2

[(
e(1)i ↑ e(1)j → e(2)i ↑ e(2)j

)
↓ i

(
e(1)i ↑ e(2)j + e(2)i ↑ e(1)j

)]
, (2.3)

e(±1)
ij :=

1

2

[(
e(1)i ↑ k̂j + k̂i ↑ e(1)j

)
↓ i

(
e(2)i ↑ k̂j + k̂i ↑ e(2)j

)]
, (2.4)

e(b)ij :=
1↔
2

(
e(1)i ↑ e(1)j + e(2)i ↑ e(2)j

)
, (2.5)

e(ϑ)ij := k̂i ↑ k̂j . (2.6)

Here, k̂ denotes a unit vector pointing to the propagation of the tensor perturbation, and e(1) and e(2) are
two orthonormal vectors. The set of unit vectors {e(1), e(2), k̂} forms the right-handed Cartesian coordinate
system. One can easily show that the above polarizations satisfy

e(ε)ij ē
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Fig. 11.1 Displacements induced on a sphere of free particles by each polarization mode of a plane gravitational wave
permitted in any metric theory of gravity. The wave propagates in the +Z direction and has a sinusoidal time
dependence. The solid and dashed lines are snapshots atωt = 0 andπ, respectively. There are no displacements
perpendicular to the plane of the $gure. In (a), (b) and (c), the wave propagates out of the page; in (d), (e), and (f),
the wave propagates in the direction of the arrow.

Now, if the observer knows the direction k a priori, either by associating the wave
with an electromagnetic counterpart, such as a gamma-ray burst, or by triangulating the
direction using the arrival times of signals detected at widely spaced antennas, then by
choosing the Z-axis parallel to k, she can determine uniquely the amplitudes as given in
Eq. (11.42), and thereby obtain the class of the incident wave. Because a specific source
need not emit the most general wave possible, the E(2) class determined by this method
would be the least general class permitted by any metric theory of gravity.

Eardley et al
(1973a,b)We can extract the extra GW polarizations if one can resolve 

the three-dimensional shapes of galaxies! 
--> a direct test of the modified theory of gravity

Yusuke Mikura
(ASIAA)



Summary
• Taking the divergence of the curl of the projected tidal tensor field X :   
∇・∇ × X, allows us to extract GW signals locally, free from scalar 
(gravitational potential) tidal force field. 

• Taking the cross-correlation between the divergence and the curl of X  
: < ∇ f・∇ × X >, we can extract parity-violating GW signals.

• Our method is complementary to the E/B-mode decomposition, as it 
can extract GWs locally, in principle.

• Calculating the expected signal-to-noise ratio is an ongoing work.

• Placing an upper limit on ΩGW from the current data of galaxy surveys 
will be the next step.

Okumura & Sasaki, JCAP 10 (2024) 060 [arXiv:2405.04210]
See also, Mikura, Okumura & Sasaki (2025) [arXiv:2507.23302]



Appendix



Relation to E/B-modesAppendix: Relation to E/B-modes
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• Fourier modes

• Power spectra



Parity-violating GW encoded in the galaxy shape 
power spectrum

• E/B-mode decomposition

• GW contributions

• Power spectra

Eðk; n̂Þ ¼ iBðk; n̂Þ≳ ¼2ϕðk; n̂Þe≡2iσk ;

ð2ϕÞk; n̂¼≳mi≡Þn̂¼m
j
≡Þn̂¼ϕijÞk¼;

EðkL; n̂Þ ¼ bGWK ðkLÞ
1

8
ð1þ ϕ2LÞ

X

σ

hðσÞðkLÞ;

BðkL; n̂Þ ¼ −bGWK ðkLÞ
i
2
ϕL

X

σ

σ
2
hðσÞðkLÞ;

hXðkÞY¼ðk0Þi≳ ð2ϕÞ3σð3ÞD ðk − k0ÞPXYðkÞ;

PEBðkL; μ; zÞ ¼
i
16

μLð1þ μ2LÞðbGWK ðzÞÞ2αðkLÞPhðkLÞ

≃ i
49

256
μLð1þ μ2LÞχ2ðkL; zÞðbscalarK ðzÞÞ2

× αðkLÞPhðkLÞ; ð83

Poisson 
Noise Maximally 

parity-violating 
power PEB

Akitsu, Li & Okumura (2023)


