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Introduction

We describe TensoriaCalc, a tensor calculus package written to be
smoothly consistent with the Wolfram Language, so as to ensure ease
of usage. It allows multiple metrics to be defined in a given session; and,
once a metric is computed, associated standard differential geometry
operations to be carried out — covariant derivatives, Hodge duals, index
raising and lowering, derivation of geodesic equations, etc. Other non-
metric operations, such as the Lie and exterior derivatives, coordinate
transformation on tensors, etc. are also part of its built-in functionality.



TensoriaCalc has been published

Website:

http://www.stargazing.net/yizen/Tensoria.html
GitHub:

https://github.com/tensoria/TensoriaCalc
arXiv:2512.18796 [gr-gc]
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Declare a Metric, 2-Sphere for example

2-Sphere: (d/)? = (d6)? + Sin[0] (d ¢)?
g2Sphere = Metric[a_, b_, (de)”+Sin[e]° (d¢)?, Coordinates - {6, ¢}, StartIndex - 1]
% // Head

gab

Tensor

: 1 %)
2-Sphere metric: ( _ 5 )
Q@ Sin[O]
1 (%)

Metric|a_, b_
[ > (BSin[e]z

), Coordinates » {6, ¢}, StartIndex -» 1]

gab



Declare a Metric, 2-Sphere for example

Metric[a™, b", (ve)®+Sin[e]™? (v¢)?, Coordinates » {6, ¢}, StartIndex - 1]
ab
g



Declare a Metric, 2-Sphere for example

Geometrical objects:

Christoffel[a™, m_, n_, g2Sphere]
Riemann[a™, b_, m_, n_, g2Sphere, TooltipDisplay -» TensorComponents]
Ricci[a™, b_, g2Sphere]

mn



Declare a Metric, 2-Sphere for example

TensorComponents can extract tensor components from a Tensor object.

g2Sphere
% // TensorComponents // MatrixForm

gab
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(e Sin[e]zj



Declare a Metric, 2-Sphere for example

ra,uv = % ga}\(augv}\ + 6vg,uA - 6Ag,uv)

Christoffel[a™, m_, n_, g2Sphere]
% // TensorComponents // MatrixForm

mn




Declare a Metric, 2-Sphere for example

I_a,uv = % ga}\(augv)\ + avg,uz\ - 6/\g,uv)
NonZeroTensorComponents extracts non-zero tensor components from a Tensor object.

Christoffel[a™, m_, n_, g2Sphere]
% // NonZeroTensorComponents

d
T
mn
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Declare a Metric, 2-Sphere for example

R, =0,M%5-0,T% s+ %, T%s-T% T

Riemann[a™, b_, m_, n_, g2Sphere, TooltipDisplay -» TensorComponents]
% // NonZeroTensorComponents

a
R

bmn

{R‘b 1, R e-Sin[@]z,Rd) 5.1, R aSin[@}z}
Sl0lS) Olo]S] Slelo] POP



Declare a Metric, 2-Sphere for example

Specified indices with coordinates

Riemann[6™, ¢_, ¢_, 6_, g2Sphere, TooltipDisplay » TensorComponents]

Riemann[1™, 2_, 2_, 1_, g2Sphere, TooltipDisplay -» TensorComponents]

Riemann[a™, b_, m_, n_, g2Sphere, TooltipDisplay -» TensorComponents] /.
{a->6,b->¢,m> ¢, n> 6}

Riemann[a™, b_, m_, n_, g2Sphere, TooltipDisplay -» TensorComponents] /.
{a-1,b>2,m>2, n->1}

~Sin[o]?

~Sin[o]?

—Sin[@]2

~Sin[6]?



Declare a Metric, 2-Sphere for example

RBV = Raﬁav

Ricci[a™, b_, g2Sphere]
% // TensorComponents // MatrixForm

a
R

b
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Schwarzschild Black Hole

General Spherical Symmetric Metric

dlsq = Exp[2 ¢ [t, r]] (1- (2GNM[t, r]) /r) (dt)?- (dr)®/ (1- (2GNM[t, r]) /) -
r? ((de)?+sin[e]? (d¢)?)

g = Metric[a_, B_, dlsq, Coordinates -» {t, r, 6, ¢}]

% // TensorComponents // MatrixForm

(d“")z 240t,r] 2 2GNM[t, r]
T _ 26NM[t,r] + € (dt) (1— -

r

) -r? ((de)?+ (d¢)®Sin[e]?)

2Ultr] (p_2GNM[t,r])
(&S] = e 9 e
0 ) Ger:’I[t,f‘] 9 °
0 0 - °
. 0 @ -r?sin[o)?




Schwarzschild Black Hole

Vacuum solution

G'uv[gaB] =8 JTGN T'uv =

Einstein[u™, v_, g]

% == ZeroTensor[{u , v_}, Coordinates » {t, r, 6, ¢}]
EinsteinFieldEqns = TensorEquations[%, OutputForm -» Tensor]
EinsteinFieldEqns // TensorComponents // MatrixForm

GIJ
Y
GIJ i eu
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(G=-0)"
y
2GNM@Y t,r) 0 2e 2VBPIGNML® 1t ] 0
r? o (r-2GNM[t,r])? o
2GNME2 1t,r] 0 2GNM@Y ¢, r1-2 (P-2GNM[t,r]) ¥y @Y [t,r]
B I"2 o r‘2 o
2GNM@Y t,r]+ (P-2GNM[t,r]) @Y [t,r] - (2r-GNM[t,
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Schwarzschild Black Hole

{Gtt=0, G‘}zO}

{EinsteinFieldEgns /. {u>t, v > t}, EinsteinFieldEgns /. {u->t, v->r}}
MSol = DSolve[%, M, {t, r}][1]

{ZGNMwJHt,P] ZeQwWWJGNM“@Wt,r]::@}

::e
r2 ’ (r-2GNM[t, r])?

{M- Function[{t, r}, c1]}

M is constant
Similarly we can show  only depends on t noton r.
Therefore, we have proven the Birkhoff’'s theorem.

SubtractSides [EinsteinFieldEgns /. {u > t, v > t}, EinsteinFieldEgns /. {u->r, v-r}]
YSol = DSolve[%, ¥, {t, r}][1]

2GNM@Y [t, r] 2GNM@Y [, r] -2 (r-2GNM[t, r]) ¥ @V [t, r]

P2 P2

{Y - Function[{t, r}, c1[t]]}




Schwarzschild Black Hole

Re-define time to let e? ¥l dt — dt

rs

dlsq = (((dlsq /. ySol) /. e*=!*1 5 1) /. (MSol /. {c1-M})) /. {M-) e

g = Metric[a_, B_, dlsq, Coordinates » {t, r, 6, ¢}, FlatMetric- {1, -1, -1, -1},
OrthonormalFrameFieldIndices -» {&, }]

% // TensorComponents // MatrixForm

2
idm ¢ (1-22) (@t)?-r? ((d6)®+ (a¢)?sin[6]?)
gaB
1- o 0 0
_r*—rr‘s 9 0
0 -r? 0

0 0 @ -r’Sin[e]?



Schwarzschild Black Hole

Schwarzschild Metric is time independent.

PartialD[g, t]
% // TensorComponents // MatrixForm
%% // ZeroTensorQ



Schwarzschild Black Hole

Time translation U={1,0,0,0}

Killing equation £y gos = V(o9 =0

NonMetricTensor[{u"}, {1, 0, 0, 0}, "U", Coordinates » {t, r, 6, ¢}]
% // TensorComponents // MatrixForm

ZeroTensorQ[LieD[%%, g]]

UU

o0 o

True



Schwarzschild Black Hole

3 rotational Killing vectors

(JBQ) = _xIB pel v

(U = (1/2) €®%(J°Y, a=1, 2,3
J1 = NonMetricTensor|[{u"}, -I (yVz-2zVy), "j" Coordinates - {t, x, vy, z}]
J2 = NonMetricTensor|[{u"}, -I (ZVX-XxVZ), "J%" Coordinates - {t, X, vy, z}]

J3 = NonMetricTensor [{u"}, -I (xVy-yVX), "7°", Coordinates - {t, X, y, z}]

Jlll

lel

J3ll



Schwarzschild Black Hole

t=t

x =r Sin[6] Cos[¢]

y =r Sin[6] Sin[¢]

Z=r Cos|[6]

Mink4dTotre¢ = Sequence[{t »t, x> rSin[6] Cos[¢], y»>rSin[6] Sin[¢], z->rCos[O]},

{t, r, 6, ¢}1;
CoordinateTransformation[Mink4dTotreg]

{dltedlt, dx > rCos[6] Cos[¢] A6 + Cos[¢] drSin[6] - rd¢ Sin[6] Sin[¢],

dy > rCos[¢] dopSin[6] + rCos[6] dOSin[¢] +dr Sin[6] Sin[¢],

dz - Cos[©] dr-rdoSin[6], t>1t, x>rCos[¢] Sin[&], y—>rSin[6] Sin[¢],

Cos[©] Cos[p] VO +Cos[¢] VrSin[e] - Csc[O] Vo Sin[¢]
r r

7y Cos[¢] C:C[G] Vo  Cos (6] Vp@ Sin[¢] +vrSin[o] Sin[¢], vz > Cos[O] Vr -

b

z->rCos[O], Vt>Vt, VX
Ve Sin[6] }
r




Schwarzschild Black Hole

J1

% // TensorComponents // MatrixForm

J1 = CoordinateTransformation[%%, Mink4dTotreg¢]
% // TensorComponents // MatrixForm

Jlll
(%)
(%)
12z
_j]_ y
Jlfl
(%)
(%]
iSin[o]

1 Cos[¢p] Cot[O]



Schwarzschild Black Hole

J2

% // TensorComponents // MatrixForm

J2 = CoordinateTransformation[%%, Mink4dTotreg¢]
% // TensorComponents // MatrixForm

JZH
(%)
-1z
0
1 X
szl
(%)
(%]
-1 Cos[¢]



Schwarzschild Black Hole

J3
% // TensorComponents // MatrixForm
J3 = CoordinateTransformation[%%, Mink4dTotreg¢]

% // TensorComponents // MatrixForm



Schwarzschild Black Hole

Killing equation £y gop = Via9p =0

ZeroTensorQ[LieD[J1, g]]
ZeroTensorQ[LieD[J2, g]]
ZeroTensorQ[LieD[J3, g]]

True
True

True



Schwarzschild Black Hole

Curvature Singularity
ContractTensors contracts tensors with repeated indices.

Riemann[a_, B_, u_, v_, g] ~Riemann[a™, B7, u™, v, gl
(ContractTensors[%]) // FullSimplify

R ROPHY

apBuv

12 rs?

r.,6

Weyl[a_, B_, u_, v_, g] ~Weyl[a™, B", u~, v, gl
(ContractTensors([%]) // FullSimplify

c Caﬁuv

BV

12 rs?
6




Schwarzschild Black Hole

Movelndices move indices to the target position (upstairs or downstairs)

Riemann[a_, B_, u_, v_, g]
MoveIndices[%, {a™, B_, U, V_}, E]

R
aBuv

o U
B v

R



Schwarzschild Black Hole

Tidal force~%

MoveIndices [Riemann[a_, B_, u_, v_, g], OrthonormalBasis, g] // FullSimplify
NonZeroTensorComponents [%]

R. .. .
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R. ..->—,R.. .. R. ... ..—- R. ... R. ... — A
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Schwarzschild Black Hole

GeodesicSystem returns a List consisting of;
The affinely parameterized geodesic Lagrangian

2 9ap U AP [A]
The non-affinely parametrized geodesic Lagrangian

1

| Gap U [S]UP[8] | 2
List of affinely parametrized geodesic equations

LUt A+ T, ! [AJUY[A] = 0
List of non-affinely parametrized geodesic equations
Ly [s] + Ty, v [s]u" [s]= u®[s] £ In | gagu®[s]uP[s] | 2

geodesicsystem = GeodesicSystem[g, AffineParameter » A, NonAffineParameter » t] /.
© -» Function[{1}, Pi/ 2];



Schwarzschild Black Hole

1
LNullPEp[o ] = (LNullKEPE[[l]] - 3 P [A]Z) /. P[A] = rs p;

Plot[{FullSimplify [LNullPEp[p] (rs?/¢?)], 2/27}, {p, .5, 5},
AxesLabel » {"r/r.", "¢*/r""}]

K



Kerr-Newman Black Hole

id = # &;

p=(r’+a’Cos[e]?)?;
A=r?-rsr+a’+el;
FS = FullSimplify[#, {6 < ¢ <2Pi, <6 <Pi,rza>0,G>0, M>0, rs >0, e € Reals}] &;

desa - [ [Lar)’ 2| 2 ) 2 A 2 2
Tsq = - + (de)*| p® - (dt-asin[e]” (d¢) )" — + ((r+a®) (d¢) -a (dt))
A 2

P P
g = Metric[u_, v_, dtsq, TensorName - "g", Coordinates » {t, r, 6, ¢},
ChristoffelOperator -» FS, RiemannOperator - id, RicciOperator - FS,
RicciScalarOperator -» FS, MetricOperator - FS, TooltipStyle -» {"Large"}]
% // TensorComponents // MatrixForm

2 Sin[e]?)
2 b

8kn
Y%
2 (e*-rrs) a (-e’+rrs) Sin(e)?
1+ a’+2r?+a’Cos[20] 0 0 r?+aCos[0]?
_ r?1a’Cos[e8]?
@ a’+e?+r’-rrs 2 0
2 2 2

(%] %] -r“-a“Cos[O] %]

a (-e*+rrs) Sin[e]? 0 0 - (az+r‘2)2 Sin[e]?+a® (a*+e’+r’-rrs) Sin[o]*

riia?Cos[o]? riia’cCos[e]?



Kerr-Newman Black Hole

areSin[o]?
2

re
A= NonMetr'icTensor'[{v_}, {—2, 0, 0, -
P P

% // TensorComponents // MatrixForm

}, "A", Coordinates -» {t, r, 6, qb}]

A
v

er
r¢ia’Cos[0]?

0
0

aerSin[o]
r’+a%Cos[0]?

2




Kerr-Newman Black Hole

F=4d, A

% // TensorComponents // MatrixForm

(dA)
18
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e
- +
(r?+a? Cos[e]z)2 r’+a’ Cos [6]7

2a’ercCos[o] Si
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Kerr-Newman Black Hole

Maxwell’'s egns in vacuum
VFF,=d,=0
CovariantD[u~, F, g] // FS
% // ZeroTensorQ

(vaa )&
v

True



Kerr-Newman Black Hole

G=2T

G = Einstein[a™, 87, g, EinsteinOperator » FS];
T = ElectromagneticStressEnergyTensor[a , 3°, F, g] // FS;
TensorEquations[G, 2 T, OutputForm - BooleanQ]

True



Kerr-Newman Black Hole

Let’s calculate Carter constant

F={=2,1,0,2}

v_ Jresas -=A a
n _{22’22’0’ 22}

14U = NonMetricTensor

nvU = NonMetricTensor
lll

Vv
n

11 |

1

a
, 1,0, —}, "1", Coordinates » {t, r, o6, qb}]
A

r? 4+ a2

rl:+a? -A
J

sz sz

Ja.’

a
}, "n", Coordinates -» {t, r, 6, ¢}]
2,02



Kerr-Newman Black Hole

KHY = p2 [H v 4 2 g
Kuv =
TensorName |
(Tensor‘sPr‘oduct[p2 (TensorsProduct[ {1uU, nvU}] + TensorsProduct[{nvU, 1uU}]) -
r’Metric[u", v, g, MetricOperator » FS] , Tensor] // FS), "K"
% // TensorComponents // MatrixForm

KM

a’ (a*+3a’r?+r? (e®+2r’-rrs)+(a*+a’ r?+r® (-e’+rrs)) Cos[20]) a’+3a’r’+2ar’ (e’+r’-rrs)+a’ (a’+r’) Cos[26]

% 0

(a*+e’+r (r-rs)) (a’+2r’+a’Cos[26]) (a’+e’+r (r-rs)) (a*+2r’+a’Cos[20])

2

a’ (a’+e’+r (r-rs)) Cos[0]?

@ B r+a’Cos[0]? 0 0
1

2 2

a“+3a’r’+2ar? (e’+r’-rrs)+a’ (a’+r?) Cos[206)] 0 9 2a*Cos[0]?+2r? (a®+e’+r’-rrs) Csc[6]
(a®+e*+r (r-rs) ) (a*+2r*+a*Cos[206] ) (a*+e®+r (r-rs) ) (a*+2r?+a®Cos[20])




Kerr-Newman Black Hole

Killing equation VI¢K*"} = 0

SymmetrizelIndices[CovariantD[a , Kuv, g]]
ZeroTensorQ[%]
(v ) LoV

True



Kerr-Newman Black Hole

K:K“Vpupv
pu = NonMetricTensor[{u_}, {-En, pr[A], pe[A], 1}, "p", Coordinates » {t, r, 6, ¢}1;
Kuv pu (pu /. 1> v)

ContractTensors[%]

Vv
p p K"

U v
2Enl (a>+3a’r’+2ar? (e?+r’-rrs)+a’ (a’+r?) Cos[20])

(a*+e’*+r (r-rs)) (a®>+2r?+a’*Cos[26]) i

a’En® (a*+3a’r?+r? (e?+2rf-rrs) + (a*+a’r’+r? (-e’+rrs)) Cos[26])

(a*+e’+r (r-rs)) (a’+2r?+a’Cos[20])

+

1 (2a%Cos[6]?+2r? (a®+e?+r?-rrs) Csc[O]?)
(a?+e*+r (r-rs)) (a®?+2r*+a’Cos[20])
a’ (a?+e*+r (r-rs)) Cos[e]?pr(a]? po [ ]2
r’+a’Cos[0]? 1+ 2Coslo]




Thank you



