QCD group meeting March 16, 2018, Academia Sinica

Dilepton Angular Distributions of Drell-Yan Process in Geometric Picture and pQCD

Wen-Chen Chang 章文箴 Institute of Physics, Academia Sinica collaborating with Jen-Chieh Peng, Evan McClellan, and Oleg Teryaev

The Drell-Yan Process

S.D. Drell and T.M. Yan, PRL 25 (1970) 316

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 May 1970)

On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region, $s \rightarrow \infty$, Q^2/s finite, Q^2 and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as $Q^2/s \rightarrow 1$ is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function νW_2 near threshold.

FIG. 1. (a) Production of a massive pair Q^2 from one of the hadrons in a high-energy collision. In this case it is kinematically impossible to exchange "wee" partons only. (b) Production of a massive pair by parton-antiparton annihilation.

FIG. 2. $d\sigma/dQ^2$ computed from Eq. (10) assuming identical parton and antiparton momentum distributions and with relative normalization.

 $\frac{d\sigma}{dQ^2} = \left(\frac{4\pi\alpha^2}{3Q^2}\right) \left(\frac{1}{Q^2}\right) \mathfrak{F}(\tau) = \left(\frac{4\pi\alpha^2}{3Q^2}\right) \left(\frac{1}{Q^2}\right) \int_0^1 dx_1 \int_0^1 dx_2 \delta(x_1x_2 - \tau) \sum_a \lambda_a^{-2} F_{2a}(x_1) F_{2\bar{a}}'(x_2),$

Angular Distribution in the "Naïve" Drell-Yan

VOLUME 25, NUMBER 5

PHYSICAL REVIEW LETTERS

3 August 1970

(3) The virtual photon will be predominantly transversely polarized if it is formed by annihilation of spin- $\frac{1}{2}$ parton-antiparton pairs. This means a distribution in the di-muon rest system varying as $(1 + \cos^2\theta)$ rather than $\sin^2\theta$ as found in Sakurai's¹⁰ vector-dominance model, where θ is the angle of the muon with respect to the timelike photon momentum. The model used in Fig.

Drell-Yan Process with QCD Effect

Angular Distributions of Lepton Pairs

5

Angular Distributions of Lepton Pairs from Z/γ^*

 $\frac{d\sigma}{d\Omega} \propto \left[(1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{A_2}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \right]$

 $A_3, A_4: \gamma^* / Z$ interference, sensitive to $\sin^2 \theta_W$ $A_5, A_6, A_7:=0$, up to $O(\alpha_s^1)$

Angular Distribution

I.R. Kenyon, Rep. Prog. Phys. 45 (1982) 1261

Figure 17. Measurements of the decay angular distribution of lepton pairs by Kourkoumelis *et al* (1980), Antreasyan *et al* (1980) and Badier *et al* (1980a). Fits to the form $1 + \alpha \cos^2 \theta$ are shown as full curves and are discussed in the text. (a) ISR ABCS, 4.5 < M < 8.7 GeV, (b) ISR CHFMNP, 6 < M < 8 GeV, (c) NA3, $\pi^- 200$ GeV, 4 < M < 6 GeV, $p_i < 1$ GeV.

$$d\sigma(\Omega) \propto (1 + \cos^2 \theta)$$

Fig. 3a-c. Parameters λ , μ , and ν as a function of P_T in the CS frame. a 140 GeV/c; b 194 GeV/c; c 286 GeV/c. The error bars correspond to the statistical uncertainties only. The horizontal bars give the size of each interval. The dashed curves are the predictions of perturbative OCD [3]

 $v \neq 0$ and v increases with p_T

E615 @ FNAL: Violation of LT Relation

PRD 39, 92 (1989)

252-GeV π⁻+W

Angular Distributions of Z Production

CDF, PRL 106, 241801 (2011)

Angular Distributions of Z Production CMS, PLB750, 154 (2015)

Angular Distributions of Z Production

ATLAS, JHEP08, 159 (2016)

LHC: $A_0 - A_2$, NLO vs. NNLO

p+p at \sqrt{s} = 8 TeV

 $A_0 - A_2$ can be described by fixed-order NNLO QCD.

E615: $1 - \lambda - 2\nu$, NLO vs. NNLO

252-GeV π-+W

 $1 - \lambda - 2\nu$ cannot be described by fixed-order NLO and NNLO QCD.

14

Theoretical Interpretations of Lam-Tung Violation in pion-induced DY

	Boer-Mulders Function	QCD chromo- magnetic effect	Glauber gluon		
Origin of effect	Hadron	QCD vacuum	Pion specifically		
Quark-flavor dependence	Yes	No	No		
Hadron dependence	Yes	No	Yes		
Large P _T limit	0	Nonzero	0		
Reference	PRD 60, 014012 (1999)	Z. Phy. C 60,697 (1993)	PLB 726, 262 (2013)		

Measurements with different beams π^{\pm} , p, K^{\pm} , \overline{p} over wide kinematical ranges would help differentiating the origin.

Observations and Interpretations of Lam-Tung Violation

- Lam-Tung Violation: $(1 \lambda 2\nu \neq 0; A_0 \neq A_2)$
 - Small q_T :
 - Intrinsic partonic transverse momentum k_T
 - TMD Boer-Mulders functions (Boer 1999) or non-pert. effects
 - Large q_T :
 - Hard multi-gluon radiation ($O(\alpha_s^2)$ or higher)
- A simple and intuitive interpretation of Lam-Tung Violation: the geometric picture
 - J.C. Peng, W.C. Chang, R.E. McClellan, O. Teryaev Phys. Lett. B 758, 394 (2016).
 - W.C. Chang, R.E. McClellan, J.C. Peng, O. Teryaev Phys. Rev. D 96, 054020 (2017).

Define three planes in the Collins-Soper frame

- 1) Hadron Plane $(\vec{P}_B \times \vec{P}_T)$
- Contains the beam \vec{P}_B and target \vec{P}_T momenta
- Angle β satisfies the relation $\tan \beta = q_T / Q$

Collins-Soper (γ^*/Z rest) Frame

Define three planes in the Collins-Soper frame

- 1) Hadron Plane $(\vec{P}_B \times \vec{P}_T)$
- Contains the beam \vec{P}_B and target \vec{P}_T momenta
- Angle β satisfies the relation $\tan \beta = q_T / Q$

2) Quark Plane $(\hat{z}' \times \hat{z})$

- q and \overline{q} have head-on collision along the \hat{z}' axis
- \hat{z}' axis has angles θ_1 and φ_1 in the C-S frame

Collins-Soper (γ^*/Z rest) Frame

Collins-Soper (γ^* /Z rest) Frame

Define three planes in the Collins-Soper frame

1) Hadron Plane $(\vec{P}_B \times \vec{P}_T)$

- Contains the beam \vec{P}_B and target \vec{P}_T momenta
- Angle β satisfies the relation $\tan \beta = q_T / Q$

2) Quark Plane $(\hat{z}' \times \hat{z})$

- q and \overline{q} have head-on collision along the \hat{z}' axis
- \hat{z}' axis has angles θ_1 and φ_1 in the C-S frame

3) Lepton Plane $(\vec{l} \times \hat{z})$

- l^- and l^+ are emitted back-to-back with equal $|\vec{P}|$
- l^- is emitted at angle θ and φ in the C-S frame

What is the lepton angular distribution with respect to the \hat{z}' (natural) axis? $\frac{d\sigma}{d\Omega} \propto 1 + a\cos\theta_0 + \cos^2\theta_0$ Ф Lepton Plane *a*: forward-backward asymmetry coefficient \vec{p}_B How to express the angular θ θ_0 distribution in terms of θ and ϕ ? l^+ \vec{p}_T \hat{y} $\cos\theta_0 = \cos\theta\cos\theta_1 + \sin\theta\sin\theta_1\cos(\phi - \phi_1)$ ϕ_1 Hadron Plane \hat{x} \hat{z}

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{\sin^2 \theta_1}{2} (1 - 3\cos^2 \theta) + (\frac{1}{2}\sin 2\theta_1 \cos \phi_1) \sin 2\theta \cos \phi + (\frac{1}{2}\sin^2 \theta_1 \cos 2\phi_1) \sin^2 \theta \cos 2\phi + (a\sin \theta_1 \cos \phi_1) \sin \theta \cos \phi + (a\cos \theta_1) \cos \theta + (\frac{1}{2}\sin^2 \theta_1 \sin 2\phi_1) \sin^2 \theta \sin 2\phi + (\frac{1}{2}\sin 2\theta_1 \sin \phi_1) \sin 2\theta \sin \phi + (a\sin \theta_1 \sin \phi_1) \sin \theta \sin \phi.$$

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{A_2}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$$

 $A_0 - A_7$ are entirely described by θ_1, φ_1 and *a*.

Angular distribution coefficients $A_0 - A_7$

 $A_0 = \langle \sin^2 \theta_1 \rangle$ $A_1 = \frac{1}{2} \left\langle \sin 2\theta_1 \cos \phi_1 \right\rangle$ $A_2 = \left\langle \sin^2 \theta_1 \cos 2\phi_1 \right\rangle$ $A_3 = a \langle \sin \theta_1 \cos \phi_1 \rangle$ $A_4 = a \left\langle \cos \theta_1 \right\rangle$ $A_5 = \frac{1}{2} \left\langle \sin^2 \theta_1 \sin 2\phi_1 \right\rangle$ $A_6 = \frac{1}{2} \left\langle \sin 2\theta_1 \sin \phi_1 \right\rangle$ $A_7 = a \langle \sin \theta_1 \sin \phi_1 \rangle$

Some implications of the angular distribution coefficients $A_0 - A_7$

- $A_0 = \langle \sin^2 \theta_1 \rangle$ $A_1 = \frac{1}{2} \left\langle \sin 2\theta_1 \cos \phi_1 \right\rangle$ $A_2 = \left\langle \sin^2 \theta_1 \cos 2\phi_1 \right\rangle$ $A_3 = a \langle \sin \theta_1 \cos \phi_1 \rangle$ $A_{4} = a \left\langle \cos \theta_{1} \right\rangle$ $A_5 = \frac{1}{2} \left\langle \sin^2 \theta_1 \sin 2\phi_1 \right\rangle$ $A_6 = \frac{1}{2} \left\langle \sin 2\theta_1 \sin \phi_1 \right\rangle$ $A_7 = a \left\langle \sin \theta_1 \sin \phi_1 \right\rangle$ $\tan \theta_1 = q_T / Q$
- • $A_0 \ge A_2 \text{ (or } 1 \lambda 2\nu \ge 0)$
- Lam-Tung relation $(A_0 = A_2)$ is satisfied when $\phi_1 = 0$.
- Forward-backward asymmetry, *a*, is reduced by a factor of $\langle \cos \theta_1 \rangle$ for A_4 .
- A_5, A_6, A_7 are odd functions of ϕ_1 and must vanish from symmetry consideration.
- A_0, A_2 and A_3 increase with q_T monotonically while A_4 decreases with q_T monotonically.
- $A_1 \ (\propto \langle \sin 2\theta \rangle)$ first increases with q_T , reaching a maximum, and then decrease.
- Some equality and inequality relations among $A_0 - A_7$ can be obtained.

Angular Distributions of Z Production CMS, PLB750, 154 (2015)

θ_1 and ϕ_1 at NLO(α_s^1): $q\bar{q} \rightarrow \gamma^*/Zg$

θ_1 and ϕ_1 at NLO(α_s^1): $q\bar{q} \rightarrow \gamma^*/Zg$

Collins-Soper (γ^* /Z rest) Frame

θ_1 and ϕ_1 at NLO(α_s^1): $qg \rightarrow \gamma^*/Zq$

Collins-Soper (γ^* /Z rest) Frame

Origins of the non-coplanarity 1) Processes at order α_s^2 or higher $A_0 = \left\langle \sin^2 \theta_1 \right\rangle$ q $A_1 = \frac{1}{2} \langle \sin 2\theta_1 \cos \phi_1 \rangle$ $A_2 = \left\langle \sin^2 \theta_1 \cos 2\phi_1 \right\rangle$ Quark Plane ā Hadron Plane

 $q - \overline{q}$ axis is not sitting on the hadron plane: $\phi_1 \neq 0$

2) Intrinsic k_T from interacting partons

$$A_0 = \left\langle \sin^2 \theta_1 \right\rangle; A_2 = \left\langle \sin^2 \theta_1 \cos 2\phi_1 \right\rangle$$

When $\phi_1 \neq 0, A_0 \neq A_2$

Compare with CMS data on Lam-Tung relation

$$\lambda = \frac{2Q^2 - q_T^2}{2Q^2 + 3q_T^2} \qquad \nu = \frac{2q_T^2}{2Q^2 + 3q_T^2} \quad \text{for } q\overline{q} \to ZG$$
$$\lambda = \frac{2Q^2 - 5q_T^2}{2Q^2 + 15q_T^2} \qquad \nu = \frac{10q_T^2}{2Q^2 + 15q_T^2} \quad \text{for } qG \to Zq$$

Solid curves correspond to a mixture of 58.5% *qG* and 41.5% $q\bar{q}$ processes, and $\langle \sin^2 \theta_1 \cos 2\phi_1 \rangle / \langle \sin^2 \theta_1 \rangle = 0.77$

Violation of Lam-Tung relation is well described

J.C. Peng, W.C. Chang, R.E. McClellan, O. Teryaev Phys. Lett. B758, 394 (2016)

Compare with CDF data (Z production in $p + \bar{p}$ collision at 1.96 TeV)

Solid curves correspond to a mixture of 27.5% qG and 72.5% $q\overline{q}$ processes, and $\langle \sin^2 \theta_1 \cos 2\phi_1 \rangle / \langle \sin^2 \theta_1 \rangle = 0.85$

Violation of Lam-Tung relation is not ruled out

J.C. Peng, W.C. Chang, R.E. McClellan, O. Teryaev Phys. Lett. B758, 394 (2016)

θ_1 and ϕ_1 at NLO(α_s^1): $q\bar{q} \rightarrow \gamma^*/Zg$

θ_1 and ϕ_1 at NLO(α_s^1): $q\bar{q} \rightarrow \gamma^*/Zg$

θ_1 and ϕ_1 at NLO(α_s^1): $qg \rightarrow \gamma^*/Zq$

Collins-Soper (γ^* /Z rest) Frame

Rapidity Dependence of A_i

TABLE I. Angles θ_1 and ϕ_1 for four cases of gluon emission in the $q - \bar{q}$ annihilation process at order- α_s . The signs of A_0 to A_4 for the four cases are also listed.

Case	Gluon emitted from	$ heta_1$	ϕ_1	A_0	A_1	A_2	A_3	A_4
1	Beam quark	β	0	+	+	+	+	+
2	Target antiquark	β	π	+	_	+	-	+
3	Beam antiquark	$\pi - \beta$	0	+	—	+	+	—
4	Target quark	$\pi - \beta$	π	+	+	+	—	_

A cancelation effect leads to a strong rapidity (y) dependence of A_1 , A_3 and A_4 .

Compare with CMS data on Lam-Tung relation

Compare with CMS data on Lam-Tung relation

Summary

- The lepton angular coefficients A_0 - A_7 are described in terms of the polar and azimuthal angles of the $q \overline{q}$ axis.
- The striking q_T dependence of A_0 (or λ) can be well described by the mis-alignment of the $q \overline{q}$ axis and the CS z-axis, i.e. **finite** θ_1 .
- Violation of the Lam-Tung relation $(A_0 \neq A_2)$ is described by the non-coplanarity of the $q - \overline{q}$ axis and the hadron plane, i.e. **finite** ϕ_1 .
- Many salient features of the data could be nicely interpreted within the framework of geometric picture.