

2nd QCD Group Meeting – 28 June 2018

Angular Distribution of J/ψ

Yu-Shiang Lian • 連昱翔 Wen-Chen Chang • 章文箴 Rurng-Sheng Guo • 郭榮升 Marcia Quaresma • 夸瑪莎 Chia-Yu Hsieh • 謝佳諭

Institute of Physics, Academia Sinica • 中央研究院物理研究所 Department of Physics, National Kaohsiung Normal University • 國立高雄師範大學物理學系

Non-Relativistic QCD (NRQCD)

 Introduce the charmonium hadroproduction via color-singlet channels (a-f) and color-octet channels (g-h)

 The cross-section of quarkonium production rely on the extraction of short-distance coefficients (SDCs) and long-distance matrix elements (LDMEs)

$$\sigma(pp \to \mathcal{Q} + X) = \sum_{n} \hat{\sigma}(pp \to Q\bar{Q}[n] + X) \times \begin{array}{l} \langle \mathcal{O}^{\mathcal{Q}}(n) \rangle \\ \text{SDCs} \end{array} \quad \text{LDMEs} \end{array}$$

 $\Rightarrow \text{ SDCs can calculated by pQCD} \Rightarrow \hat{\sigma}(pp \to Q\bar{Q}[n] + X) = \sum_{a,b} \int dx_1 dx_2 d\text{LIPS} f_{a/p}(\mathbf{x}_1) f_{b/p}(\mathbf{x}_2) \times |M(ab \to Q\bar{Q}[n] + X)|^2$

LDMEs estimation rely on experimental measurement (non-perturbative QCD)
might affect the final prediction of polarization because of feed-down components

Yu-Shiang Lian

Angular Distribution of J/ψ

The Comparison of J/ψ Differential Cross-Section

Modern Physics Letters A Vol.28, No.9 (2013) 1350027

Yu-Shiang Lian

Angular Distribution of J/ψ

28 Jun 2018 3 / 26

Polarization of J/ψ

- * The J/ ψ production mechanism described by QCD, but...
 - * **Inconsistent p**_T **distribution** between theoretical prediction and experimental data
 - * **Inconsistent polarization** between theoretical prediction and experimental data

- * Several models are being considered:
 - * Color Evaporation Model (CEM) \rightarrow predicts unpolarized J/ ψ ($\lambda = 0$)
 - Color Singlet Model (CSM)
- \Rightarrow predicts **longitudinal polarized** J/ ψ ($\lambda < 0$)
- **Non-Relativistic QCD (NRQCD)** \rightarrow predicts **transversely polarized J**/ ψ ($\lambda > 0$)

* The J/ ψ polarization from experimental measurement \Rightarrow still puzzle at low-p_T!

Yu-Shiang Lian

•

Polarization of J/ψ

* The polarization of J/ψ can be accessed by the decay angular distribution of dimuon pairs. This is the way to explore the production mechanism of quarkonium.

* The general expression of angular distribution of J/ψ (decay into dilepton):

 $d\sigma/d\Omega \propto 1 + \lambda \cos^2\theta + \mu \sin^2\theta \cos\varphi + (\nu/2) \sin^2\theta \cos^2\varphi$

- * where θ and φ refer to polar and azimuthal angle of *lepton*⁺ in the J/ ψ rest frame.
- * The **angular parameter** λ refers to the **polarization parameter**.

* The measurement of angle rely on the definition of **characteristic quantization axis** (e.g. *Helicity axis, Gottfried-Jackson axis, Collins-Soper axis ...*).

The Choice of Reference Frame

- * The main difference of reference frame is the definition of *polar axis* (*z* axis):
 - *Helicity* (HX): direction of momentum sum of colliding beams ($\hat{b}_1 + \hat{b}_2$).
 - **Gottfried-Jackson** (GJ): direction of momentum of one of beams ($\hat{b_1}$).
 - **Collins-Soper** (CS): direction of momentum difference of colliding beams $(\hat{b_1} \hat{b_2})$.

PHENIX Experimental Result of J/ψ Polarization

PRD 82, 012001 (2010)

- * Including the prompt J/ ψ and feed-down J/ ψ (33 ± 5%) from χ_c , ψ' (and *b*-hadron?).
- * Obtain angular parameters with **1D fitting**.
- * Present in *Helicity* and *Gottfried-Jackson* frame.

Yu-Shiang Lian

ALICE Experimental Result of J/ψ Polarization

- * Including the prompt J/ ψ and feed-down J/ ψ from χ_c , ψ' and *b*-hadron.
- * Obtain angular parameters with **1D fitting**.
- * Present in *Helicity* and *Collins-Soper* frame.

HERA-B Experimental Result of J/ψ Polarization

EPJC 60, 517-524 (2009)

- * Including the prompt J/ ψ and feed-down J/ ψ from χ_c , ψ' (~27%) (and *b*-hadron?).
- * Obtain angular parameters with **1D fitting**.
- Present in *Gottfried-Jackson*(□), *Helicity*(*) and *Collins-Soper* frame(•).

Yu-Shiang Lian

Experimental Result of J/ ψ Polarization

PRL 85, 2886 (2000) PRL 99, 132001 (2007)

- * Including the prompt J/ ψ (32 ± 6%) and feed-down J/ ψ from χ_c , ψ'
- * Obtain angular parameters with **1D fitting**.
- * Present in *Helicity* frame only.

LHCb Experimental Result of J/ψ Polarization

EPJC 73, 2631 (2013)

- * Including the prompt J/ ψ and feed-down J/ ψ from χ_c , ψ' .
- * Obtain angular parameters with **2D fitting**.
- * Present in *Helicity* and *Collins-Soper* frame.

Yu-Shiang Lian

Comparison of J/ ψ Polarization with Different Experiments

* What cause the inconsistency of the J/ψ polarization between each experiments?

Experimental Ambiguity

- 1D extraction v.s. 2D extraction:
 - The approach of 1D extraction rely on the perfectly understanding of azimuthal angle and μ, ν angular parameters.
 - Better to use 2D approach in order to minimize the bias.
- * Frame dependence of angular parameters:
 - The results from each experiment show very strong frame dependence.
 - Need a frame-independent approach.
- * Feed down component from χ_c states:
 - No good solution to separate requiring the global analysis.

Frame-Independent Approach

A complementary approach: **Pietro Faccioli** frame-independent polarization The *shape* of the distribution is (obviously) frame-invariant (= invariant by rotation) \rightarrow it can be characterized by a frame-independent parameter, writeable e.g. as $\widetilde{\boldsymbol{\lambda}} = \frac{\lambda_g + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}} \quad \text{or} \quad \mathcal{F} = \frac{1 + \lambda_{\vartheta} + 2\lambda_{\varphi}}{3 + \lambda_{\vartheta}} \quad \left[\mathcal{F} = \frac{1 + \lambda}{3 + \tilde{\lambda}} \right]$ $\lambda_{\vartheta} = -1$ $\lambda_{\omega} = 0$ $\lambda_{\vartheta} = +1$ $\lambda_{\omega} = 0$ $\begin{array}{c} \lambda_{\vartheta} = -1/3 \\ \lambda_{\varphi} = -1/3 \end{array} > \begin{array}{c} \boldsymbol{\lambda} = -1 \\ \boldsymbol{\lambda} = -1 \\ \boldsymbol{\mathcal{F}} = \mathbf{0} \end{array}$ $\lambda_{\vartheta} = \pm \frac{1}{5}$ $\lambda_{\varphi} = \pm \frac{1}{5}$ $\mathcal{J} = \frac{1}{2}$ N.B: $\tilde{\lambda}$ is convenient because it is "homogeneous" to λ_{β} , $\lambda_{\vartheta} = -1/3$ $\lambda_{\varphi} = +1/3$ but $-1 < \tilde{\lambda} < +\infty$ (no upper bound!), while \mathcal{F} is more conveniently normalized in the range 0 < *F* < 1 rotations in the production plane!

Yu-Shiang Lian

Angular Distribution of J/ψ

Frame-Independent Approach

Yu-Shiang Lian

Angular Distribution of J/ψ

28 Jun 2018 15/26

Frame-Independent Approach

Pietro Faccioli et al. — Eur. Phys. J. C (2010) 69, 657-673

* Propose a new quantity which is independent of the choice of reference frame:

$$\widetilde{\lambda} = \frac{\lambda_{\theta} + 3\nu_{\varphi}}{1 - \nu_{\varphi}} = \frac{2\lambda + 3\nu}{2 - \nu}$$

* Once we obtain the angular parameter λ and ν , we can determine the invariant parameter which suppose to be frame-independent.

* On the other hand, determine the invariant parameter could be also a systematic uncertainty test for angular analysis framework.

COMPASS/CERN Drell-Yan Experiment in 2015

- * COMPASS has took DY data in **2015**, and continue to take DY data in **2018**
- * π^- beam at **190 GeV/c** with average beam intensity **6×10⁷ s⁻¹** from **CERN SPS**
- Transversely polarized NH₃ targets (110 cm) + Al target (7 cm) + W target (120 cm)

Z Vertex Distribution Selecting Dimuon

- * In COMPASS 2015 setup, the NH₃ targets, Al target and W target are distinguishable. (with Z vertex resolution $\sigma_z \sim 11$ cm)
- The analysis of the angular distribution of events from NH₃ targets will be presented in this talk.

COMPASS/CERN Drell-Yan Experiment in 2015

- Several sources of dimuons have been considered:
 - Drell-Yan process
 - **Resonance:** J/ψ , ψ' , **Upsilon**
 - Open-Charm
 - Combinatorial background
- Using the MC framework, we can well describe the level of contamination in mass region that we are interested:
 - → J/ψ dominate region: 3.0 3.2 GeV/c²

Mass region	Statistics	Contamination
3.0 – 3.2 GeV/c ²	751,229 pairs	$4.3\pm0.1\%$

Kinematics Coverage of Dimuon

- * The distributions of Feynman variable x_F versus transverse momentum p_T are presented in the top.
- * The cut of transverse momentum is applied due to low resolution in angular variable (lower cut) and also due to very low statistics (upper cut): $0.4 < p_T < 3.0 \text{ GeV/c}$
- * The angular parameters extraction is evaluated in kinematics bins of p_T , x_{π} , x_N and x_F .

Angular Parameter Extraction

- * Select events at fixed $p_T(x_{\pi}, x_N \text{ or } x_F)$ bin.
- * Construct angular variables in HX, GJ and CS frames.
- * Perform un-binned maximum likelihood fitting(UBML) with PDF.
- * The acceptance are estimated by MC sample and applied during UBML fitting.

Result of J/ ψ Polarization from COMPASS

Yu-Shiang Lian

Yu-Shiang Lian

Angular Distribution of J/ψ

28 Jun 2018 23 / 26

Yu-Shiang Lian

The Polarization of J/ψ from each Experiments

Summary

- * In order to extract unbiased J/ψ polarization, we should...
 - Extracting result from the 2D angular distribution (three-parameter function).
 - Presenting polarization parameters in at least two frames.

- * Polarization of J/ψ is sizable from COMPASS 2015 preliminary result
 - Transversely polarized J/ψ (base on invariant parameters result)