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Talk Outline

I Motivation: Exclusive processes in Perturbative QCD
I Theoretical Background

I Heavy quark Operator Product Expansion (HOPE)
I Numerical Simulation via Lattice QCD

I Results & further calculations
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Exclusive Processes in Perturbative Quantum
Chromodynamics (1980)
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Exclusive Processes in Perturbative QCD

I Systematic analysis of inclusive processes at large energy.
I Introduce the meson light cone distribution amplitude φM (x, µ2)

I Probability amplitude for converting the meson into a (collinear) quark
anti-quark pair with momentum fraction x and (1− x), respectively.

M
k+

xk+

(1− x)k+

φM (x, µ2)
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The Pion Form Factor

I Within this framework, one can calculate the pion form factor as the
convolution of three factors:

Fπ(Q2) =
large Q2

∫ 1

0
dy
∫ 1

0
dyφM (y,Q2)TH (x, y,Q2)φM (x,Q2)

=
large Q2

∫ 1

0
dy
∫ 1

0
dy
(

× ×
)

(1)

I The light cone distribution amplitudes contain all the
non-perturbative information about the process.
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The Light Cone Distribution Amplitude

I Can decompose in terms of Gegenbauer Polynomials

φ(x,Q2) = 6x(1− x)
∑

n

an(Q2)C3/2
n (2x − 1) (2)

I In the limit that Q2 →∞, φ(x,Q2)→ 6x(1− x).
I In this decomposition, all non-perturbative information is found in the

an(Q2): the Gegenbauer moments.

I Thus full knowledge of moments allows one to reconstruct the full
LCDA.

I Process independent: Used to predict
I Pion electromagnetic form factor, pion transition form factor, B → ππ,

two photon processes.
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Calculating the Pion’s LCDA

I Only ab-initio method to calculate non-perturbative QCD: Lattice
QCD.

I But problem: LCDA defined as

φπ(x, µ2) =

∫
dx−

(2π)
ei(2z−1)x−p+/2 〈0|q(−x−/2)γ+q(x−/2) |π(p)〉

(3)
ie, on the light cone.

I Requires real time evolution: impossible in Lattice QCD.

I Number of different proposals to address this.
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Options on the Market

I OPE: Moments of LCDA may be calculated via local matrix elements.

〈0|Oµ0...µn |π(p)〉 = 〈ξn〉pµ0 . . .pµn (4)

I Must subtract power divergences, lot of work for single moment!

I More recently, quasi-PDF and pseudo-PDF: Relate equal time matrix
elements in large Pz limit to light cone matrix elements.

I Infinite momentum frame: Requires large boosts and matching. Obtain
full x dependence!

I Feynman-Hellman Theorem: Measure energy shifts in two point
function

I We pursue Heavy quark Operator Product Expansion (HOPE)
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Operator Product Expansion

I Wilson: Expand a non-local operator as the sum of local operators

T{A(z/2)B(−z/2)} =
∑

n

Cn(z2)zµ1 . . . zµnOµ1...µn
n (0) (5)

I Example of factorization.

I Relegate short distance physics to Cn(z2): perturbatively calculable!

I Non-pert. physics stored in moments 〈ξn〉 (µ2):

〈0| Oµ1...µn
n (0) |π(p)〉 = 〈ξn〉 (µ2)pµ1 . . .pµn − Tr (6)

I Recall:
φ(x, µ2) = 6x(1− x)

∑

n

an(µ
2)C3/2

n (2x − 1) (7)

I OPE allows one to reconstruct full LCDA!
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Heavy quark Operator Product Expansion

I Aim to study the matrix element Uµν = (Tµν − T νµ)/2 where

Tµν(p,q) =
∫

d4zeiq·z 〈0|T{Jµ(z/2)J ν(−z/2)} |π(p)〉 (8)

I Replace current Jµ with heavy-light current:

JµQ(x) = q(x)γµγ5Q(x) + Q(x)γµγ5q(x) (9)

I Q(x) is a fictitious heavy quark species.

I By tuning the mass (mQ ∼
√
−q2), we relegate the heavy quark

effects to Wilson Coefficients.

I Moments 〈ξn〉 (µ2) unchanged.
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Advantages of Heavy Quark Approach

I Use of heavy quark has a number of advantages:
I Theoretical

I Some higher twist contributions removed (cat’s ears diagram)
I Heavy quark mass provides additional contribution to Q̃2 = Q2 + m2

Q:

Since higher twist contributions arise from eg 1/Q̃2, these are
suppressed.

I Computational
I Heavy quark is cheap to calculate.
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HOPE: Final Equation

I Also summed target mass effects: Improve agreement at
sub-asymptotic scales.

Uµν(p,q) =
2ifπεµναβqαpβ

Q̃2

∑

even

C(2)
n (η)

n + 1
ζn Cn(Q̃2/µ2, Q̃2/mQ)︸ ︷︷ ︸

hard

〈ξn〉︸︷︷︸
soft

(10)

I where η = p · q/
√

p2q2, ζ =
√

p2q2/Q̃2
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Roadmap to the Pion’s LCDA

Tµν(p,q) =
∫

d4zeiq·z 〈0|T{Jµ(z/2)J ν(−z/2)} |π(p)〉 (11)

Pert. Calculable Wilson Coefficents

Cn(Q̃2)

HOPE:

Uµν(p, q) =
2fπεµναβqαpβ

Q̃2

∑
n Cn(Q̃2)an(µ2)ωn

Simulate Tµν(p, q; a)

on lattice at finite a

Extrapolate Tµν(p, q; a)

to the continuum

Fit continuum Uµν(p, q) to

HOPE formula. Extract an(µ2).
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Lattice QCD

I Construct Euclidean
lattice with
nx × ny × nz × nt

vertices separated by
distance a: UV
regulator.

I Choose suitable
boundary conditions

I Must relate Euclidean
space finite volume
matrix elements to
Minkowski space
continuum matrix
elements.

q(n+ µ̂)q(n)

µ

ν
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Lattice QCD

I Construct Euclidean
lattice with
nx × ny × nz × nt

vertices separated by
distance a: UV
regulator.

I Choose suitable
boundary conditions

I Must relate Euclidean
space finite volume
matrix elements to
Minkowski space
continuum matrix
elements.

Uµ(n)

q(n+ aµ̂)q(n)

µ

ν
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Lattice Details

I Currently, quenched calculation: Proof of principle.

I Simulate at constant physical volume: L = 1.9 fm.

I Pion mass mπ = 0.55 GeV
I Continuum extrapolation:

I 323 × 64, mπL ∼ 5
I 403 × 80
I 483 × 96
I 643 × 128

I Two heavy quark masses to study heavy quark dependence.
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Simulation Details

I Construct ratio Rµν(p,q, τ) of three-point to two-point functions

Rµν(p,q, τ) =
∫

d3xeiq·x 〈0|T{Jµ(x
2
)J ν(
−x
2

)} |π(p)〉 ∝ Cµν(p,q, τ)
Cπ(p, τ)

(12)

I Performing a Fourier transform gives

Tµν(p,q) =
∫

dτeiq4τRµν(p,q, τ) (13)

I We construct the anti-symmetric combination

Uµν(p,q) =
1
2
(Tµν(p,q)− T νµ(p,q)) (14)
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Kinematic Tricks

I OPE proportional to

Uµν(p,q) ∼
∞∑

n=0

〈ξn〉ωn, ω =
2p · q

Q̃2
=

1
x

(15)

I Physical region ω > 1, x < 1. However, on the lattice, we access
ω < 1.

I Thus only a few moments contribute (kinematic suppression).

I By increasing 2p · q while keeping Q̃2 fixed lets us enhance the
contribution from higher moments.

I But! Requires boosted pion: increase excited states, require
momentum smearing to access large momenta

I We can optimize the kinematics.
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Kinematic Tricks

I Split matrix element into real and imaginary parts

I In certain kinematics, Im part has no a0 contribution: starts at a2.
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Roadmap to the Pion’s LCDA

Tµν(p,q) =
∫

d4zeiq·z 〈0|T{Jµ(z/2)J ν(−z/2)} |π(p)〉 (16)

Pert. Calculable Wilson Coefficents

Cn(Q̃2)

HOPE:

Uµν(p, q) =
2fπεµναβqαpβ

Q̃2

∑
n Cn(Q̃2)an(µ2)ωn

Simulate Tµν(p, q; a)

on lattice at finite a

Extrapolate Tµν(p, q; a)

to the continuum

Fit continuum Uµν(p, q) to

HOPE formula. Extract an(µ2).
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Continuum Extrapolation

I Calculate Tµν(p,q;a) for fixed lattice spacing a. By keeping physical
volume fixed and reducing a, we approach continuum limit.

I Tµν(p,q;a) product of conserved currents: Renormalization is
simple.

I Thus we extrapolate with a functional form

Tµν(p,q;a) = Tµν(p,q; 0) + aTµν
(1)(p,q) + a2Tµν

(2)(p,q) + . . . (17)

I Tµν(p,q; 0) is our continuum limit.
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Continuum Extrapolation

I Using L = 40, L = 48 data
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Roadmap to the Pion’s LCDA

Tµν(p,q) =
∫

d4zeiq·z 〈0|T{Jµ(z/2)J ν(−z/2)} |π(p)〉 (18)

Pert. Calculable Wilson Coefficents

Cn(Q̃2)

HOPE:

Uµν(p, q) =
2fπεµναβqαpβ

Q̃2

∑
n Cn(Q̃2)an(µ2)ωn

Simulate Tµν(p, q; a)

on lattice at finite a

Extrapolate Tµν(p, q; a)

to the continuum

Fit continuum Uµν(p, q) to

HOPE formula. Extract an(µ2).
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Results (Preliminary!)

I Currently Wilson coefficents are unity: ∼ 10% systematic error. To
be corrected in full analysis.

Uµν(p,q) =
2ifπεµναβqαpβ

Q̃2

[
1 +

1
3
C(2)

2 (η)C2(Q̃2/µ2, Q̃2/mQ)a2(µ
2)ξ2

]

(19)
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Comparison with Other Results

fπ 0.167 ± 0.003 GeV〈
ξ2
〉

0.24 ± 0.03

mQ 2.68 ± 0.02 GeV

0.25 0.30
〈ξ2〉

Braun et al. (2006)

Arthur et al, (2011)

Braun et al. (2015)

Bali et al. (2019)

HOPE (2020)

Figure 1: Other calculations at MS µ = 2 GeV. We have neglected the chiral extrapolation.
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Conclusion

I Pion light cone distribution amplitude important for exclusive
measurements at high energies: process independent

I We have used the Heavy quark Operator Product Expansion to
extract the second Mellin Moment.

I Require Wilson Coefficients to accurately extract value.

I Higher momentum will allow us to extract higher moments.
I Requires more sophisticated momentum smearing.
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Thanks
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Spare Slides
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Chiral Extrapolation

I From Braun et al., (2006): Observable fairly flat in mπ.
I We expect chiral extrapolation to be small.
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Excited State Analysis
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I L = 32. Vary first current insertion time.
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The Parton Distribution Function on the
Lattice

I On the lattice, we must calculate the parton distribution function via
the moments

an(µ
2) =

∫ 1

0
dxxn−1f (x, µ2)

I Related to local matrix elements as

〈p| Oµ1...µn |p〉 = an(µ
2)pµ1 . . .pµn − Tr

I In principle, can reconstruct the x dependence if we know all
moments, ie via inverse Mellin Transform

Moments of the Pion’s Light Cone Distribution Amplitude: July 10, 2020. 30/ 34



Equations

Cπ(xE) = 〈0|T{Oπ+(xE)O†π+(0)} |0〉 (20)

Cµν
3 (xE , yE) = 〈0|T{Jµ(xE)J ν(yE)O†π(0)} |0〉 (21)

Tµν(pE ,qE) =

∫
dY4e−iY4·q4

Cµν
3 (x4,p1, y4,p2)

Cπ((x4 + y4)/2),p2 + p2)

√
Zπ(p1 + p2)

(22)
where we identify

pE = (iEπ(p1 + p2),p1 + p2) (23)

qE = (q4, (p1 − p2)/2) (24)
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3-Point Function Calculation

I Utilize a sequential source: Fix momentum insertion at pe

~pe

~pm

Jµ
e (~xe, τe)

Jν
m (~xm, τm)

π†
(
~0, 0

)

Euclidean time

~pm

~pe

Jν
m (~xm, τm)

Jµ
e (~xe, τe)

π†
(
~0, 0

)

Euclidean time

Moments of the Pion’s Light Cone Distribution Amplitude: July 10, 2020. 32/ 34



Predictions

I Leads to predictions about the asymptotic forms of various exclusive
processes:

Q2Fγπ(Q2) =
√

2fπ
(∑

n
an(Q2)

)
+ . . . (25)

Q2Fπ(Q2) = 16πf 2
π αS(Q

2)
(∑

n
an(Q2)

)2
+ . . . (26)
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2
)

(1 +Q2/Λ2
π)−1, Λ2

π = 6/〈r2
π〉
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Amendolia et al. (1986)

Fπ Collaboration (2008)

I Also B → ππ, two photon processes: many observables of interest!
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Where Am I From?
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Particle Physics at Adelaide

I Special Research Centre for the Subatomic Structure of Matter
(CSSM)

I numerical simulations of fundamental quantum theories (such as QCD)
I effective field theory calculations
I building models that capture the essential degrees of freedom in

complex systems

I ARC Centre of Excellence for Particle Physics at the Terascale
(CoEPP)

I Supersymmetry (SUSY)
I Dark matter
I LHC / ATLAS data analysis
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