Smearing and extracting states in LQCD

TQCD workshop @ Academia Sinica

C.-J. David Lin, Paul H. Hsiao National Chiao-Tung University, Taiwan

• Current project: Composite Higgs Model

Sp(4) gauge theories for BSM models on the lattice

- Lattice method
- Smearing (APE & Gaussian) technique
- Extracting excited states: variation method
- Quenched QCD as an example

Collaboration

Ed Bennett, Jack Holligan, Biagio Lucini, Michele Mesiti, Maurizio Piai

Jong-Wan Lee, Deog Ki Hong

Davide Vadacchino

Jarno Rantaharju

The University of Dublin

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Composite Higgs Model

Composite Higgs Model

Higgs boson as a bound state of new strong dynamics, which is lighter because of being a Pseudo Goldstone Boson.

Our project

- Sp(4) gauge + 2 fundamental Dirac fermions
- Global symmetry breaking pattern: SU(4)/Sp(4)
 - → 5 Goldstone boson
- Study spectrum to gain basic understanding
- Compute 4-fermion operator matrix elements
 - → relevant to generating Higgs mass

Lattice Method

- Strongly coupled theory \rightarrow lattice field theory
- Fermions on the grids, carrying colors, spin or flavors
- Gauge fields on the links
- Generating functional

 $Z = \int DUD\psi D\bar{\psi}e^{-S[U]}e^{-2\int d^{4}x\bar{\psi}(D[U] + m)\psi}$ = $\int DU \det(D[U] + m)^{2}e^{-S[U]}$ (Hybrid) Monte-Carlo simulation Quench calculation: $\det(D[U] + m) = 1$

Lattice Method

Measuring observables

• 2-point correlation function

$$C(t) = \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \langle 0 \mid T[O(\vec{x},t)O^{\dagger}(0,0)] \mid 0 \rangle$$

$$\sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \langle 0 \mid [\bar{u}\gamma_{5}d](\vec{x},t)[\bar{d}\gamma_{5}u](0,0)\mid 0 \rangle$$

$$\sum_{n} \frac{\langle 0 \mid O_{\pi} \mid n \rangle \langle n \mid O_{\pi}^{\dagger} \mid 0 \rangle}{2E_{n}} e^{-E_{n}t}$$

$$= \sum_{\vec{x}} e^{-i\vec{p}\cdot\vec{x}} \operatorname{Tr} \left[S_{u}(0,0;\vec{x},t)S_{d}^{\dagger}(0,0;\vec{x},t) \right]$$

$$\xrightarrow{t \to \infty} \frac{1}{2m_{\pi}} \left| \langle 0 \mid O_{\pi} \mid n \rangle \right|^{2} e^{-M_{\pi}t}$$

$$S = M^{-1}q$$

• Effective Mass

$$M_{eff}(t) = -\ln\left[\frac{C(t+1)}{C(t)}\right]$$

M is the Dirac operator calculated on a given background field.

Smearing

Free fermion, $\varepsilon = 0.1$

• Wuppertal smearing (Gaussian smearing) acts on fermion field increasing the overlap of ground state.

$$q^{(n+1)}(x) = \frac{1}{1+2d\varepsilon} \left[q^{(n)}(x) + \varepsilon \sum_{\mu=\pm 1}^{\pm d} U_{\mu}(x)q^{(n)}(x+\hat{\mu}) \right]$$
 Real

Real conf., $\varepsilon = 0.1$

Smearing

• APE smearing averages out UV fluctuations of the gauge fields.

$$U_{\mu}^{(n+1)}(x) = P\left\{(1-\alpha)U_{\mu}^{(n)}(x) + \frac{\alpha}{6}S_{\mu}^{(n)}(x)\right\}, \quad S_{\mu}(x) = \sum_{\pm\nu\neq\mu}U_{\nu}(x)U_{\mu}(x+\hat{\nu})U_{\nu}^{\dagger}(x+\hat{\mu})$$

Smearing effects

Results

- Effects of Wuppertal smearing
- Effects of APE smearing

Variational Method

• General Eigenvalue problem

 $C(t_2)v_n(t_2, t_1) = \lambda_n(t_2, t_1)C(t_1)v_n(t_2, t_1) \to \lambda_n(t_2, t_1) = e^{-E_n(t_2 - t_1)}$

The matrix C(t) is constructed by different interpolating operators. Here, we vary the operators by the number of steps of Wuppertal smearing at source and sink with fixed step size ε .

$$C(t) = \begin{pmatrix} c_{\varepsilon}^{(N_{1},N_{1})}(t) & c_{\varepsilon}^{(N_{1},N_{2})}(t) & \dots & c_{\varepsilon}^{(N_{1},N_{n})}(t) \\ c_{\varepsilon}^{(N_{2},N_{1})}(t) & c_{\varepsilon}^{(N_{2},N_{2})}(t) \\ \vdots & \ddots \\ c_{\varepsilon}^{(N_{n},N_{1})}(t) & c_{\varepsilon}^{(N_{n},N_{2})}(t) & \dots & c_{\varepsilon}^{(N_{n},N_{n})}(t) \end{pmatrix}$$

Example: SU(3) gauge theory

- Lattice: $48 \times 24 \times 24 \times 24$, $\beta = 6.2 \rightarrow a^{-1} \approx 2.73(5) GeV$
- 280 configurations
- Wilson fermion

Example: SU(3) gauge theory

- Lattice: $48 \times 24 \times 24 \times 24$, $\beta = 6.2 \rightarrow a^{-1} \approx 2.73(5) GeV$
- 280 configurations
- Wilson fermion

Example: SU(3) gauge theory

am ₀ ch	-0.71	-0.72	-0.727
PS	0.2148(12)	0.1715(17)	0.1382(18)
V	0.3186(23)	0.2973(33)	0.2828(53)
E 1	0.3206(20)	0.2986(24)	0.2822(31)
E2	0.628(14)	0.611(16)	0.624(17)
E2/E1	1.961(45)	2.045(51)	2.212(54)
AV	0.463(30)	0.466(16)	0.438(37)

SU(3) gauge theory example

 $a^{-1} \approx 2.73(5) GeV$

 M_{ρ} at physical M_{π} approximates 715MeV physical M_{ρ} is roughly 770 MeV 3.0 phs. M_{π} fit 2.5 $\beta = 6.2$ $\frac{M_{\rho'}}{M_{\rho}}$ 2.0 $1.5 \stackrel{|\!\!|}{_{-}} \stackrel{|\!\!|}{_{-}} 0.00$ 0.02 0.04 0.06 $(aM_{\pi})^{2}$

 $M_{\rho'}$ at physical M_{π} approximates 1665 MeV physical $M_{\rho'}$ is roughly 1450/1700 MeV

- Both Wuppertal smearing and APE smearing bring the plateau of the effective mass earlier.
- The variational method extracts the excited states by solving the general eigenvalue problem.
- In this study, we measured the ρ mass at 715 MeV and ρ' at 1665 MeV