Results on Heavy Flavor from STAR

14 October, 2020 @ TQCD Meeting

Yi Yang National Cheng Kung University

Motivation

- Relativistic Heavy Ion Collider
- The STAR detector
- Physics measurements
 - Charmonium
 - Bottomonium
 - Open Heavy Flavor

Summary

https://www.bnl.gov/photowalk/winners-2018.php

- Quarkonium production mechanism and polarization are still not fully understood in hadron-hadron collisions
- Some popular models on the market:
 - Color Singlet Model (CSM)
 - Color Octet Mechanism (COM) / NRQCD
 - Color Glass Condensate effective theory (CGC)
 - Color Evaporation Model (CEM) / Improved CEM -

The quantum numbers (spin, color) of the final and initial states are the same

The quantum numbers ofthe initial and final quark pairs can be different

- Heavy flavor quarks (open heavy flavor, quarkonia) are good probes for studying Quark Gluon Plasma in heavy-ion collisions
 - m_{c,b} >> T_C, Λ_{QCD}, m_{u,d,s}: produced dominantly by high-Q² scatterings in the early stage
 - Good candidates to study the evolution of QGP

https://indico.cern.ch/event/443462/images/6069-hf_cartoon1.png

Study QGP via Quarkonium

- Quarkonium suppression is one of smoking guns of the QGP formation (by T. Matsui and H. Satz PLB 178 (1986) 416)
 - → Color-screening: Quarkonium dissociates in the medium
- Sequential melting: different states

dissociate at different temperatures

- Interpretation of quarkonium suppression is complicated
 - Hot nuclear matter effects
 - Dissociation
 - Regeneration from deconfined quarks
 - Medium-induced energy loss
 - Formation time effect
 - Cold nuclear matter effects
 - nPDF, Nuclear absorption, Co-mover et.al
 - **Feed-down from excited charmonium states and B-hadrons**

Rothkopf

- Open heavy flavors (Qq̄, Qqq) are also good probes to study
 - Flavor-dependence of in-medium energy loss

(Nature of heavy quark-medium interaction)

Heavy quark collective behavior

(Degree of thermalization, spatial diffusion coefficient)

Heavy quark hadronization (QGP dynamics)

Melting in QGP

p + p : Proton (QCD) structure, evolution of final states, hard processes...

A + A : ... + Quark-Gluon Plasma (QGP), ...

The most versatile collider in the world!

The STAR Detector

$J/\psi \& \psi(2S) \text{ in } p+p @ 200 \& 500 \text{ GeV}$

\Box J/ ψ and ψ (2S) signals from the *dielectron* and *dimuon* channels

- $\hfill Precision measurement of J/\psi production cross-section for <math display="inline">p_T^{J/\psi}$ from 0 to 14 GeV/c
- Consistent with CEM (direct J/ ψ production only) and NLO NRQCD calculations (prompt J/ ψ production)
- **CGC+NRQCD** seems to overestimate the data in the low p_T region

STAR 2012: PLB 786 (2018) 87-93 STAR 2009: PLB 722 (2013) 55; PRC 93 (2016) 064904 PHENIX: PRD 82 (2010) 012001 CEM: Phys. Rept. 462 (2008) 125; R. Vogt private communication (2009) NLO+NRQCD A: PRD 84 (2011) 114001 CGC+NRQCD: PRL 113 (2014) 192301 NLO+NRQCD B: PRL 108 (2012) 172002

- Event activity = charged-particle multiplicity at mid-rapidity
- $\hfill\square$ Relative J/ ψ yield rises faster than a linear function
 - Similar global trend at different collision energies, and similarly as for the D meson
- PYTHIA, EPOS3 and Percolation model can qualitatively describe the rising behavior
 STAR 2012: PLB 786 (2018) 87-93

J/ψ Cross-Section in p+p Collisions @ 500 GeV

- □ Precision measurement of J/ ψ production cross-section for $p_T^{J/\psi}$ from 0 to 20 GeV/c
- $\hfill J/\psi$ kinematic acceptance strongly depends on the polarization assumption
 - Fiducial cross-section: restricted phase-space (no uncertainty from polarization)
 - Full cross-section: full phase-space (more models for comparison)

J/ψ Cross-Section in p+p Collisions @ 500 GeV

- Consistent with CGC+NRQCD, NLO NRQCD calculations and ICEM (prompt J/ψ)
- ψ(2S) to J/ψ ratio follows the world trend (adding 2017 data)

CHENE KUNG CHENE KUNG CHENE KUNG CHENE CHE

arXiv:2007.04732

- □ First STAR J/ ψ polarization measurements in Helicity (HX) and Collins-Soper (CS) frame from the *dimuon* channel in p+p collisions @ 200 GeV
- At this p_T range, it is sensitive to constraint
 NRQCD Long Distant
 Matrix Elements (LDMEs)
- λ_θ, λ_φ, and λ_{θφ} are
 consistent with ZERO
 within uncertainties
- NRQCD and CGC+NRQCD
 predictions can both
 qualitatively describe data
- Possible to distinguish different NRQCD predictions with larger statistics at low p_T

NRQCD1: Phys. Rev. Lett 114 (2015) 092006 NRQCD2: Phys. Rev. Lett 110 (2013) 042002 CGC+NRQCD:JHEP12 (2018) 057

J/ψ Polarization Measurement

] Frame invariant quantity: $\lambda_{inv} = \frac{\lambda_{\theta} + 3\lambda_{\phi}}{1 - \lambda_{\phi}}$

Good cross-check on measurements performed in different frames

Consistent with the previous measurements from STAR and PHENIX

- Charged jet to J/ψ fragmentation function :
 No significant z dependence observed within uncertainties for z <1
- Different trend and probability of producing a J/ψ in charged jet for the measured kinematics range

Yi Yang October 14, 2020 @ TQCD (ASIoP)

J/ ψ & ψ (2S) in p+A & Au+Au @ 200 GeV

\Box Clear J/ ψ and ψ (2S) signals in p+Au and Au+Au collisions

- **Precision** measurements of J/ψ invariant yield in p+Au
- □ First $\psi(2S)$ to J/ ψ double ratio measurement from STAR between p+p and p+Au at midrapdity at RHIC:

1.37 ±0.42(stat.) ±0.19(syst.)

- R_{pAu} from STAR has similar trend as R_{dAu} from PHENIX
 Similar CNM effects in p+Au and d+Au
- □ The model calculation with additional nuclear absorption on top of nuclear PDF effects can qualitatively describe the data

- **D** No obvious p_T dependence in R_{AA} in 0 20% centrality bin
- **T** Rising R_{AA} with p_T in 20 40% and 40 60% centrality bins
 - Rising trend at high p_T could be due to formation time effects, B-hadron feed-down
- Suppression at low p_T: dissociation, Cold Nuclear Matter (CNM) effect, regeneration
- Strong suppression at high p_T in central collisions is a clear sign of dissociation since regeneration contribution and CNM effects are small

RHIC vs. LHC

Transport model: Model I at RHIC: PLB 678 (2009) 72 Model I at LHC: PRC 89 (2014) 054911 Model II at RHIC: PRC 82 (2010) 064905 Model II at LHC: NPA 859 (2011) 114

p_T > 0 GeV/c: at RHIC suppression increases with centrality, for central collision larger suppression compared to LHC

→ Larger contribution from regeneration at LHC

- $p_T > 5$ GeV/c: less suppression in central collisions at RHIC compared to LHC
 - → Larger dissociation rate at LHC
- Data vs. transport models (dissociation + regeneration effects)
 - $p_T > 0$ GeV/c: both models can describe the centrality dependence at RHIC, but tend to overestimate suppression at LHC
 - p_T > 5 GeV/c: there is tension among data and models

PLB 797 134917, 2019

Extract Non-prompt J/ ψ Fraction

- Fit the distribution of the pseudo proper decay length with templates to extract non-prompt J/ψ fraction
- Pseudo proper decay length:

$$l_{J/\psi} = \frac{\vec{L} \cdot \hat{p}}{|\vec{p}|/c} \cdot M_{J/\psi}$$

□ Observe strong suppression of $B \rightarrow J/\psi$ at high p_T (> 5 GeV/c) □ Similar to inclusive $D^0 R_{AA}$

Υ in p+p Collisions @ 500 GeV

- □ The inclusive Y(1S) production can be described by CEM predictions
- CGC+NRQCD calculation including only direct Y(1S) overestimates the inclusive Y(1S) measurement

CEM: Phys.Rev.C 92 034909(2015)

CGC+NRQCD: Phys.Rev.D 94, 014028(2016), Phys.Rev.Lett. 113, 192301(2014)

□ R_{pAu} = 0.82 ± 0.10 (stat.) ^{+0.08} -0.07 (syst.) ±0.10 (global) → Quantify CNM effects

STAR, PLB 735 (2014) 127 PHENIX, PRC 87 (2013) 044909 JHEP 1303, 122 (2013)

□ Clear Υ (1S, 2S, 3S) signals in Au+Au collisions → First Υ (1S, 2S, 3S) → $\mu^+\mu^-$ measurement at STAR

- Suppression increasing with centrality
- \Box Υ (2S+3S) is more suppressed than Υ (1S), in central collisions

Sequential melting

- RHIC vs. LHC:
 - Υ (1S): similar suppression as the CMS measurement
 - Υ(2S+3S): hint of less suppression at RHIC than at LHC

ΥR_{AA} vs. Models

Rothkopf: using a lattice QCD vetted, complex-valued, heavy-quark potential embedded in a realistic, hydrodynamically evolving medium background

Rapp: using temperature-dependent binding energies and pertinent reaction rates, B-meson resonance states in the equilibrium limit near the hadronization temperature, and a lattice-QCD based equation of state for the bulk medium

D[±] in Au+Au Collisions @ 200 GeV

□ $D^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}$ reconstructed topologically using HFT detector □ Measured $D^{\pm} R_{AA}$ is comparable to D^{0} within uncertainties

 \rightarrow Significant suppression at in central Au+Au at high p_T

- Good probe of strangeness enhancement and coalescence hadronization
- □ Significant enhancement in D_s^{\pm}/D^0 ratio compared to PYTHIA and p+p
 - No strong centrality dependence
 - Comparable to ALICE Pb+Pb data
- Various models describe data at high or low p_T with varying degree of quality

$B/D \rightarrow e$ (HFE) Fraction in Au+Au 200 GeV

Excellent track pointing resolution from HFT enables the usage of the DCA distribution to distinguish different sources contributing to inclusive electrons

Stay tuned for more Heavy Flavor results from STAR in the next few years!

- \Box The bound state of two heavy quarks (q \overline{q})
 - **J/** ψ is a $c\overline{c}$ (1974) and **Y** is a $b\overline{b}$ (1977) bound state
- Historically physicists tried to understand the production mechanism and polarization
- □ The production includes two parts:
 - Hard process (short distance): the production of qq pair and it can be calculated by pQCD
 - Soft process (long distance): the formation of quarkonium from qq and it can be parameterized by phenomenological models

Prompt quarkonium includes two contributions:

- Direct production from hard process
- Decays of excited (heavier) states

Non-prompt quarkonium (J/\psi) comes from decays of B-hadron

Simultaneous fit on mass and pseudo-proper time to extract the non-prompt contribution $Pseudo-proper time: \tau = \frac{L_{xy} m_{PDG}^{1/\psi}}{V_{y}}$

Color Singlet Model (CSM):

- The quantum numbers (spin, color) of the final and initial states are the same
 - ➔ The final state must be color singlet

(colorless)

C-H. Chang, Nucl. Phys. B 172, 425 (1980); R. Baier and R. Ru ckl, Phys. Lett. B 102, 364 (1981); Z. Phys. C 19, 251 (1983); E. L. Berger, D. L. Jones, Phys. Rev. D 23, 1521 (1981).

Large discrepancies between experimental results and predictions

(FPCP2013)

- The contribution from NNLO* contribution in CSM is found to be significant
- Good agreement with Tevatron and LHC results (generally)

J.P. Lansberg arXiv:1303.2858

ATLAS: Nucl. Phys. B 850, 3, 2011

Note : NNLO* is not full NNLO calculation, currently only real contribution up to α_s^5 has been calculated (corresponds to sum of the NLO yield and contributions from pp \rightarrow Q + jjj)

Quarkonium Production: COM/NRQCD

Color Octet Mechanism (COM)/NRQCD:

The quantum numbers of the initial

and final quark pairs can be different

Can be evolved into a particular quarkonium state through

radiation of soft gluons

From Cristina Biino's Talk (FPCP2013)

Great success!

Y.Q. Ma et al., Phys. Rev. Lett. 106, 042002 (2011).

Color Evaporation Model (CEM):

- Similar to the COM, it allows the initial quark pairs to be produced in a color-octet state
 - But it can't provide the polarization prediction
- "Improved" CEM (ICEM) overcomes this issue by sorting out different spin states
 - Can provide the polarization prediction!
- Color Glass Condensate effective theory (CGC):
 - A systematic weak coupling framework
 - \rightarrow Combining with NRQCD can provide low-p_T cross-section for quarkonium CEM: H. Fritzsch, Phys. Lett. B 67, 217 (1977);

ICEM: Y. Q. Ma and R. Vogt, Phys. Rev. D 94, 114029 (2016).

CGC: Y.Q. Ma and R. Venugopalan, Phys. Rev. Lett. 113, 192301 (2014).

F. Halzen, Phys. Lett. B 69, 105 (1977);

- M. Gluck, J. F. Owens, and E. Reya, Phys. Rev.D 17, 2324 (1978);
- V. D. Barger, W. Y. Keung, and R. J. N. Phillips, Phys. Lett. B 91, 253 (1980);
- J. F. Amundson, O. J. P. Eboli, E. M. Gregores and F. Halzen, Phys. Lett. B 372, 127 (1996); J. F. Amundson, O. J. P. Eboli, E. M. Gregores and F. Halzen, Phys. Lett. B 390, 323 (1997).

- The previous Tevatron results show the discrepancy between "data and theoretical prediction" and even "CDF and Dzero results"
 - Only considered 1D polarization: $1 + \alpha \cos^2 \theta$

• Need
$$\lambda_{\theta}$$
, λ_{ϕ} and $\lambda_{\theta\phi}$:

 $\frac{d^2 N}{d\cos\theta^{\star}d\phi^{\star}} \propto 1 + \lambda_{\theta}\cos^2\theta^{\star} + \lambda_{\phi}\sin^2\theta^{\star}\cos 2\phi^{\star} + \lambda_{\theta\phi}\sin 2\theta^{\star}\cos\phi^{\star}$

- The helicity axis (HX) corresponding to the quarkonium flight direction in the center-of-mass of the colliding beams
- The Collins-Soper (CS) axis defined by the direction of the relative velocity of the colliding beams in the quarkonium rest-frame.

