SU(4)/Sp(4) composite Higgs Model 2022.01.18 TQCD workshop @ Academia Sinica

C.-J. David Lin, Ho Hsiao (Paul) 國立陽明交通大學

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

- Composite Higgs model
- Spectroscopy:
 - $N_f = 2$ Fundamental dynamical fermions
 - $n_f = 3$ Antisymmetric dynamical fermions (preliminary)
 - partially quenched chimera baryon (preliminary)
- Summary and outlook

Collaboration

Ed Bennett, Jack Holligan, Biagio Lucini, Michele Mesiti, Maurizio Piai

Jong-Wan Lee, Deog Ki Hong

Davide Vadacchino

Jarno Rantaharju

The University of Dublin

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Physics beyond standard model

Composite Higgs Model

Composite Higgs Model

Higgs boson as a bound state of new strong dynamics, which is lighter because of being a Pseudo Goldstone Boson.

Composite Higgs Model

Name	Gauge group	ψ	χ	Baryon type
M1	SO(7)	$5 imes {f F}$	$6 imes {f Spin}$	$\psi\chi\chi$
M2	SO(9)	$5 imes {f F}$	$6 imes {f Spin}$	$\psi\chi\chi$
M3	SO(7)	$5 imes {f Spin}$	$6 imes {f F}$	$\psi\psi\chi$
M4	SO(9)	$5 imes {f Spin}$	$6 imes {f F}$	$\psi\psi\chi$
M5	Sp(4)	$5 imes \mathbf{A}_2$	$6 imes {f F}$	$\psi\chi\chi$
M6	SU(4)	$5 imes \mathbf{A}_2$	$3 imes({f F},\overline{f F})$	$\psi\chi\chi$
M7	SO(10)	$5 imes {f F}$	$3 imes (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$\psi\chi\chi$
M8	Sp(4)	$4 imes \mathbf{F}$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M9	SO(11)	$4 imes \mathbf{Spin}$	$6 imes {f F}$	$\psi\psi\chi$
M10	SO(10)	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 imes {f F}$	$\psi\psi\chi$
M11	SU(4)	$4 imes (\mathbf{F}, \overline{\mathbf{F}})$	$6 imes \mathbf{A}_2$	$\psi\psi\chi$
M12	SU(5)	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes (\mathbf{A}_2, \overline{\mathbf{A}_2})$	$\psi\psi\chi,\psi\chi\chi$

D. Franzosi and G. Ferretti, arXiv:1905.08273

- 2 fundamental fermions + 3 antisymmetric fermions
- Breaking pattern:

 $G/H = SU(4) \times SU(6) / Sp(4) \times SO(6)$

• SU(3) embedded in antisymmetric representation:

 $SU(6) \to SO(6) \supset SU(3)$

Field	Sp(4) Gauge	SU(4) global	SU(6) global
A_{μ}	10	1	1
Ψ	4	4	1
X	5	1	6

• Top partner — Chimera baryon

$$\Psi = (\psi \psi \chi)$$

$$\downarrow$$
Carry QCD colour

- Colour neutral under Sp(4) gauge
- Having same quantum number can mix with the top quark, providing an origin of its mass — <u>partial top compositeness</u>

Study strategy

- Study the spectrum to gain the basic understanding of the theories
- Mesonic operators:

Label	Interpolating operator	Meson	J^P	Sp(4)	SO(6)
M	\mathcal{O}_M	in QCD			
PS	$\overline{Q^i}\gamma_5Q^j$	π	0-	5(+1)	1
S	$\overline{Q^i}Q^j$	a_0	0^{+}	5(+1)	1
V	$\overline{Q^i}\gamma_\mu Q^j$	ho	1-	10	1
Т	$\overline{Q^i}\gamma_0\gamma_\mu Q^j$	ho	1-	10(+5+1)	1
AV	$\overline{Q^i}\gamma_5\gamma_\mu Q^j$	a_1	1+	5(+1)	1
AT	$\overline{Q^i}\gamma_5\gamma_0\gamma_\mu Q^j$	b_1	1+	10(+5+1)	1
\mathbf{ps}	$\overline{\Psi^k}\gamma_5\Psi^m$	π	0-	1	20'(+1)
s	$\overline{\Psi^k}\Psi^m$	a_0	0^{+}	1	20'(+1)
v	$\overline{\Psi^k}\gamma_\mu\Psi^m$	ho	1-	1	15
\mathbf{t}	$\overline{\Psi^k}\gamma_0\gamma_\mu\Psi^m$	ho	1-	1	15(+20'+1)
av	$\overline{\Psi^k}\gamma_5\gamma_\mu\Psi^m$	a_1	1+	1	20'(+1)
at	$\overline{\Psi^k}\gamma_5\gamma_0\gamma_\mu\Psi^m$	b_1	1+	1	15(+20'+1)

Study strategy

• Quenched fundamental and antisymmetry fermions arXiv:1912.06505

Ongoing

- $N_f = 2$ dynamical fundamental fermions arXiv:1909.12662
 - $n_f = 3$ dynamical antisymmetric fermions
 - partially quenched chimera baryon
 - Fully dynamical **2F** + **3AS** fermions
 - Chimera baryon
 - 4-fermion operator matrix elements (relevant to generating Higgs mass)

Massless extrapolation

The massless extrapolations obtained with fixed beta values, which are 7.2 and 6.7 for fundamental and antisymmetric representation respectively. The dash lines refer to the fit range.

 m_{AV}/m_V

The ratio between vector meson and axial-vector meson as a function of pesudoscalar meson mass squared in gradient flow scale.

 $m_{
ho'}/m_{
ho}$

The plot of ratio $m_{\rho'}/m_{\rho}$ against $(\omega_0 m_{ps})^2$. The blue dots are in antisymmetric representation and red dots represents the ratio in fundamental representation.

Partially quenched Chimera Baryon

Effective masses plot measured from 48×24^3 lattice with dynamical antisymmetric fermion. The parameters used for the calculation are $\beta = 6.65$ and $m_0 = -1.07$. We control the ratio of m_{PS}/m_V having close value in two representations, where the quenched fundamental bare mass is $m_F = -0.734$.

- Composite Higgs model is a theory exploring new physics around ~Tev scale.
- We have studied mesonic spectrum of the theory with quenched fermions in two representations. In general, the mass of mesons in antisymmetric rep. is higher than the mass in fundamental rep.
- We present the results of dynamical calculations in two representations and discuss their finite volume effects.
- The mass ratios of m_{AV}/m_V and $m_{\rho'}/m_{\rho}$ in antisymmetric rep. is lower than the ratio in fundamental rep.
- The preliminary results of chimera baryon, which is related to the top compositeness, are presented and ready to be studied with fully dynamical fermions in mix-representation.

Thank you for listening

$N_f = 2$ dynamical fundamental fermions

Volume dependence of the pseudoscalar masses. Lattice parameters are $\beta = 7.2$ and $m_0 = -0.79$. The (blue) dashed and (black) solid lines denote the fit results and the extrapolated values in the infinite volume limit, respectively.

Antisymmetric rep. Finite volume correlation

The lattice parameters used for the calculation are $\beta = 6.8$ and $m_0 = -1.03$. The pseudoscalar mass at the infinite volume is estimated by taking the one measured at the largest volume of 54×24^3 .

Chimera baryon

Operator

$$\mathcal{O}_{CB,1}^{L,R} = \left(\overline{Q^{1a}} \gamma^5 Q^{2b} + \overline{Q^{2a}} \gamma^5 Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca}, \qquad \mathcal{O}_{CB,1}^{\prime\,L,R} = i \left(\overline{Q^{1a}} Q^{2b} + \overline{Q^{2a}} Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca}, \\ \mathcal{O}_{CB,2}^{L,R} = \left(-i \overline{Q^{1a}} \gamma^5 Q^{2b} + i \overline{Q^{2a}} \gamma^5 Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca}, \qquad \mathcal{O}_{CB,2}^{\prime\,L,R} = \left(\overline{Q^{1a}} Q^{2b} - \overline{Q^{2a}} Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca}, \\ \mathcal{O}_{CB,4}^{L,R} = -i \left(\overline{Q^{1a}} Q_{C}^{2b} + \overline{Q_{C}^{2a}} Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca}, \qquad \mathcal{O}_{CB,4}^{\prime\,L,R} = \left(\overline{Q^{1a}} \gamma^5 Q_{C}^{2b} + \overline{Q_{C}^{2a}} \gamma^5 Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca}, \\ \mathcal{O}_{CB,5}^{L,R} = i \left(-i \overline{Q^{1a}} Q_{C}^{2b} + i \overline{Q_{C}^{2a}} Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca}. \qquad \mathcal{O}_{CB,5}^{\prime\,L,R} = i \left(\overline{Q^{1a}} \gamma^5 Q_{C}^{2b} - \overline{Q_{C}^{2a}} \gamma^5 Q^{1b} \right) \Omega_{bc} P_{L,R} \Psi^{k\,ca}.$$

$$\mathcal{O}^{k}_{\mathrm{CB},\,\alpha} = -i \overline{Q^{2\,a}_{C}} Q^{1\,b} \Omega_{bc} \Psi^{k\,ca}_{\alpha}$$

$$\begin{split} \langle \mathcal{O}_{\rm CB}(t)_{\gamma} \overline{\mathcal{O}_{\rm CB}(0)}_{\gamma'} \rangle &= \sum_{\vec{x}} Q^2(t, \vec{x})^d_{\alpha} \Omega_{da}(C\gamma^5)_{\alpha\beta} Q^1(t, \vec{x})^b_{\beta} \Omega_{bc} \Psi(t, \vec{x})^{ca}_{\gamma'} \\ &\times \overline{\Psi(0)^{c'a'}}_{\gamma'} \Omega^{c'b'} \Omega^{a'd'} \overline{Q^2(0)^{b'}}_{\alpha'} (C\gamma^5)_{\alpha'\beta'} \overline{Q^1(0)^{d'}}_{\beta'}, \\ &= \sum_{\vec{x}} \Omega_{da} \Omega_{bc} \Omega^{c'b'} \Omega^{a'd'} S_{\Psi}(t, \vec{x})^{ca, c'a'}_{\gamma, \gamma'} S^2_Q(t, \vec{x})^{d, b'}_{\alpha, \alpha'} (C\gamma^5)_{\alpha\beta} S^1_Q(t, \vec{x})^{b, d'}_{\beta, \beta'} (C\gamma^5)_{\alpha'\beta'}, \\ &= \sum_{\vec{x}} \Omega_{da} \Omega_{bc} \Omega^{c'b'} \Omega^{a'd'} S_{\Psi}(t, \vec{x})^{ca, c'a'}_{\gamma, \gamma'} \operatorname{Tr} \left(S^2_Q(t, \vec{x})^{d, b'} \left((C\gamma^5) S^1_Q(t, \vec{x})^{b, d'} (C\gamma^5)^T \right)^T \right), \end{split}$$

Partially quenched Chimera Baryon

• Parity projection
$$P = \frac{1}{2}(1 \pm \gamma_0)$$

The log plot of the chimera baryon correlators (left) and their effective mass plot (right) with the parity projection.