



1

### Measurement of the exclusive neutral pion electroproduction at Jefferson Lab Hall A experiment E12-06-114

TQCD Meeting January 18, 2022

Po-Ju Lin

### Picture of Nucleon



Form Factors (FFs)
 Spatial distribution
 Momentum distribution

Generalized Parton Distributions (GPDs)

Sz.

- ✓ Spatial distribution
- Longitudinal momentum distribution

- x p = 0
- Parton Distribution Functions (PDFs)
  - Longitudinal momentum distribution
  - X Spatial distribution

#### GPDs

Correlate the transverse position to the longitudinal momentum of the partons and thus provides a 3-D information of the nucleon.

 $f(x,b_{\perp})$ 

b,

> Accessible through exclusive processes.

### Deep Exclusive Processes



- The GPDs depend on the variables at fixed Q<sup>2</sup>:
   *x*: average longitudinal momentum frac.
   ξ: longitudinal momentum diff. ≈ x<sub>B</sub>/(2-x<sub>B</sub>)
   t: four momentum transfer
- Deeply Virtual Compton Scattering (DVCS) & Deeply Virtual Meson Production (DVMP)
  - Hard exclusive production of a single photon or meson
- → In Bjorken limit ( $Q^2 \& \nu \rightarrow \infty$  at fixed  $x_B$ )
  - Hard Part: Calculable perturbatively
  - Soft Part: Nucleon structure described by GPDs

### Deep Exclusive Processes





4 chiral-even GPDs: helicity of parton unchanged

$$\mathbf{H}^q(x, \xi, t)$$
 $\mathbf{E}^q(x, \xi, t)$ viaDVCS $\widetilde{\mathbf{H}}^q(x, \xi, t)$  $\widetilde{\mathbf{E}}^q(x, \xi, t)$  $\mathbf{DVMP}$ 

+ 4 chiral-odd (transversity) GPDs: helicity of parton changed

$$\mathbf{H}^q_{\mathbf{f}}(x, \xi, t)$$
 $\mathbf{E}^q_{\mathbf{f}}(x, \xi, t)$  $\widetilde{\mathbf{H}}^q_{\mathbf{f}}(x, \xi, t)$  $\widetilde{\mathbf{E}}^q_{\mathbf{f}}(x, \xi, t)$ 

#### via DVMP

#### > DVCS

- Golden channel, simple and clean final state
- > DVMP
  - Ability to probe the chiral-odd GPDs
  - Additional non-perturbative term from meson distribution amplitude

 $e p \rightarrow e \pi^0 p$ 

$$\frac{d^{4}\sigma}{dQ^{2}dx_{B}dtd\phi} = \frac{1}{2\pi}\Gamma_{\gamma}(Q^{2}, x_{B}, E)\left[\frac{d\sigma_{T}}{dt} + \epsilon\frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon\frac{d\sigma_{TT}}{dt}\cos(\phi) + h\sqrt{2\epsilon(1-\epsilon)}\frac{d\sigma_{TL'}}{dt}\sin(\phi)\right]$$
  

$$\epsilon \cdot \text{degree of longitudinal polarization}$$

h: helicity of the initial lepton

- Factorization proven only for σ<sub>L</sub>, which depends on chiral-even GPDs only
   At sufficiently high Q<sup>2</sup>, expect σ<sub>L</sub> ∝ Q<sup>-6</sup> while σ<sub>T</sub> asymptotically suppressed and ∝ Q<sup>-8</sup>
   → σ<sub>L</sub> dominance
- $\blacktriangleright$  Previous experiments with limited reach in Q<sup>2</sup> suggest the dominance of  $\sigma_{T}$

 $e p \rightarrow e \pi^0 p$ 

$$\frac{d^4\sigma}{dQ^2dx_Bdtd\phi} = \frac{1}{2\pi}\Gamma_{\gamma}(Q^2, x_B, E) \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt}\cos(2\phi) + h\sqrt{2\epsilon(1-\epsilon)}\frac{d\sigma_{TL'}}{dt}\sin(\phi)\right]$$

 $\epsilon$ : degree of longitudinal polarization *h*: helicity of the initial lepton



#### → Modeling of $\sigma_T$ → coupling between transversity GPDs and twist-3 pion amplitude

S. Goloskokov and P. Kroll (Eur.Phys.J A47, 112(2011))

 $e p \rightarrow e \pi^0 p$ 





S. V. Goloskokov and P. Kroll, Eur. Phys. J. C65:137 (2010)

---- G. R. Goldstein, J. O. Hernandez, S. Liuti, Phys. Rev. D84 (2011)

7

 $e p \rightarrow e \pi^0 p$ 

$$\frac{d^4\sigma}{dQ^2dx_Bdtd\phi} = \frac{1}{2\pi}\Gamma_{\gamma}(Q^2, x_B, E) \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt}\cos(2\phi) + h\sqrt{2\epsilon(1-\epsilon)}\frac{d\sigma_{TL'}}{dt}\sin(\phi)\right]$$

 $\epsilon$ : degree of longitudinal polarization *h*: helicity of the initial lepton

• 
$$\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re}\left[ \langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\}$$

• 
$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[ \left(1 - \xi^2\right) \left|\langle H_T \rangle\right|^2 - \frac{t'}{8m^2} \left|\langle \bar{E}_T \rangle\right|^2 \right]$$

• 
$$\frac{\sigma_{LT}}{dt} = \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_{\pi}}{Q^7} \xi \sqrt{1-\xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[\langle H_T \rangle\right] \langle \tilde{E} \rangle$$

• 
$$\frac{\sigma_{TT}}{dt} = \frac{4\pi\alpha}{k'} \frac{\mu_{\pi}^2}{Q^8} \frac{t'}{16m^2} \left( \langle \bar{E}_T \rangle \right)^2$$

 $\overline{E}_T = 2\widetilde{H}_T + E_T$ 



Fig: M.G. Alexeev et al. Phys.Lett.B 805 (2020)

S. V. Goloskokov and P. Kroll, Eur. Phys. J. A 47 (2011) 112I. Bedlinskiy, et al. (CLAS Collaboration), Phys. Rev. C 90 (2014) 025205

## Other Exclusive $\pi^0$ Measurements



### Jefferson Lab

https://en.wikipedia.org/wiki/Thomas\_Jefferson\_National\_Accelerator\_Facility



https://www.jlab.org/div\_dept/physics\_division/GeV/whitepaperv11/index.html



Jefferson Lab: US national laboratory located in Newport News, Virginia →Continuous Electron Beam Accelerator Facility (CEBAF) + exp. Halls.

## Jefferson Lab Experimental Halls

#### Hall A



Hall C



➢ High luminosity, limited kinematic coverage
 → Test the validity of theoretical formalism



Hall B – CLAS 12

https://www.jlab.org/div\_dept/physics\_division/GeV/whitepaperv11/index.html



 $\succ$  Lower luminosity, wide kinematic coverage  $\rightarrow$  Map the GPDs

## Jefferson Lab Hall A experiment E12-06-114



 $\geq$  3<sup>rd</sup> Generation DVCS project @ Hall A  $\rightarrow$  CEBAF12 grants the ability to explore high x<sub>B</sub> with extended Q<sup>2</sup>.



#### **DVCS & Exclusive** $\pi^0$ **Production**



#### > Electron beam

- polarisation ~ 85%
- helicity flipped at 30 Hz
- luminosity: ~ 10<sup>38</sup> Hz/cm<sup>2</sup>

#### > LH<sub>2</sub> target

- 6.35 cm diameter, 15 cm long



**DVCS & Exclusive**  $\pi^0$  **Production** 



>  $\delta$ **P**/**P** resolution ~ 10<sup>-4</sup> @ 4.3 GeV





#### **DVCS & Exclusive** $\pi^0$ **Production**



#### **Recoil Proton**

- > Not detected
- Exclusivity of events ensured using missing mass, M<sup>2</sup><sub>X</sub>

## E12-06-114 Kinematic Settings

| $x_B$ label                           | 0.36 |      |       | 0.48 |      |      |       | 0.60 |       |
|---------------------------------------|------|------|-------|------|------|------|-------|------|-------|
| $\overline{\langle x_B \rangle}$      | 0.36 | 0.36 | 0.36  | 0.48 | 0.45 | 0.46 | 0.46  | 0.59 | 0.60  |
| E (GeV)                               | 7.38 | 8.52 | 10.59 | 4.49 | 8.85 | 8.85 | 10.99 | 8.52 | 10.59 |
| $Q^2$ (GeV <sup>2</sup> )             | 3.11 | 3.57 | 4.44  | 2.67 | 4.06 | 5.16 | 6.56  | 5.49 | 8.31  |
| $\widetilde{W}^2$ (GeV <sup>2</sup> ) | 6.51 | 7.29 | 8.79  | 3.81 | 5.62 | 6.67 | 8.32  | 4.58 | 6.46  |
| $-t_{\rm min}$ (GeV <sup>2</sup> )    | 0.16 | 0.17 | 0.17  | 0.33 | 0.35 | 0.35 | 0.36  | 0.67 | 0.71  |
| <u>e</u>                              | 0.61 | 0.62 | 0.63  | 0.51 | 0.71 | 0.55 | 0.52  | 0.66 | 0.50  |



➢ Ran in 2014 & 2016

- ➢ 9 settings with  $x_B$  of 0.36, 0.48, and 0.6 and  $Q^2$  ranging from about 3 to 8 GeV<sup>2</sup>
- ➢ About 50% of allocated 100 PAC days
- Missing PAC days reallocated to the future experiment @ Hall C

# Exclusive $\pi^0$ Event Selection



- ➢ Main background: accidentals. The backgound in the signal coincidence window, [-3,3] ns, is estimated via other time windows.
   ➢ Exclusivity → remove the M<sub>X</sub><sup>2</sup> = (k + P k' q<sub>1</sub> q<sub>2</sub>)<sup>2</sup> contribution from inclusive channels, threshold ≈ 1.15 GeV<sup>2</sup>
- > π<sup>0</sup> events → select events with invariant mass  $M_{\gamma\gamma} = \sqrt{(q_1 + q_2)^2}$ around the π<sup>0</sup> mass



## Exclusive $\pi^0$ Event Selection



- ➢ Main background: accidentals. The backgound in the signal coincidence window, [-3,3] ns, is estimated via other time windows.
   ➢ Exclusivity → remove the M<sub>X</sub><sup>2</sup> = (k + P k' q<sub>1</sub> q<sub>2</sub>)<sup>2</sup> contribution
  - from inclusive channels, threshold  $\approx 1.15 \text{ GeV}^2$
- > π<sup>0</sup> events → select events with invariant mass  $M_{\gamma\gamma} = \sqrt{(q_1 + q_2)^2}$ around the π<sup>0</sup> mass



### Cross-section Extraction



$$\begin{aligned} \rho & \frac{d^4\sigma}{dQ^2dx_Bdtd\phi} = \frac{1}{2\pi} \frac{d^2 \Gamma_{\gamma}}{dQ^2dx_B} (Q^2, x_B, E) \\ \frac{d\sigma_{\rm T}}{dt} + \epsilon \frac{d\sigma_{\rm L}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{\rm LT}}{dt} \cos(\phi) + \epsilon \frac{d\sigma_{\rm TT}}{dt} \cos(2\phi) \\ & + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{\rm LT'}}{dt} \sin(\phi) \end{aligned}$$

- Cross-sections extracted for all 9 kinematic settings
- Extract different terms via their corresponding
   φ dependence
- >  $d\sigma_T$  and  $d\sigma_L$  can't be seperated, extracted as  $d\sigma_U = d\sigma_T + \epsilon d\sigma_L$
- Main systematic errors come from deviation observed in DIS events and the exclusivity cuts

### Cross-sections





### Cross-sections

- Solid Markers: Measured  $d\sigma_U = d\sigma_T + \epsilon d\sigma_L$
- Dotted curves: P. Kroll, private communications
- - Hint the dominance of  $\sigma_{\rm T}$   $\rightarrow$  as suggested by the GK model
- ightarrow GK underestimates both  $\sigma_{TL}$ &  $\sigma_{TL'}$ 
  - Suggest a larger contribution of the logitudinal amplitude than the one expected by GK.
- > Sign difference in  $\sigma_{TL}$ 
  - Different from Hall B or COMPASS results

### Provide useful input for understanding the GPDs involved in the valence domain





- Dashed curves: P. Kroll, private communications
- Solid Markers: Experimental measurements
  - This work,  $x_B = 0.36$
  - This work,  $x_B = 0.48$
  - This work,  $x_B = 0.60$
  - E. Fuchey *et al,* Phys. Rev. C 83, 025201 (2011)
  - M. Defurne *et al,* Phys. Rev. Lett. 117, 262001 (2016)
  - $\succ C(Q^2)^A \exp(-Bt') \text{ fit to experimental results of}$  $d\sigma_U \text{ in different } x_B \rightarrow \text{ solid curves}$  $x_B = 0.36 \rightarrow A = -3.3 \pm 0.1$  $x_B = 0.48 \rightarrow A = -2.9 \pm 0.1$  $x_B = 0.60 \rightarrow A = -3.1 \pm 0.1$
  - > Q<sup>2</sup> dependence closer to Q<sup>-6</sup>, rather than Q<sup>-8</sup> as expected for  $\sigma_T$  at high Q<sup>2</sup>

 $< t' > = 0.1 \, GeV^2$ 

## Summary



### Exclusive $\pi^0$ Production

(M. Dlamini et al, Phys. Rev. Lett 127, 152301)

- Reasonable description of results by GK model
- Non-negligible contributions from longitudinal and transverse amplitudes are needed to better describe the data
- Provide inputs for transversity GPD parameterization



### Outlook

Extension to higher Q<sup>2</sup> and lower x<sub>B</sub>
  $\sigma_{T}$  and  $\sigma_{L}$  separation of  $\pi^{0}$  production at Hall C



Q<sup>2</sup> vs x<sub>B</sub> coverage in Halls A and C

