gT contribution to single-spin asymmetry in SIDIS

Hsiang-nan Li Academia Sinica, Jan. 18, 2022 In collaboration with S. Benic, Y. Hatta, A. Kaushik 2109.05440

Single transverse spin asymmetry (SSA)

 Consider a transversely polarized proton scatter off an unpolarized proton or electron

Mechanism

There exists correlation proportional to

$$\varepsilon_{\mu
u\rho\lambda}S^{\mu}_{T}p^{
u}_{hT}\cdots$$

 To generate such term in Feynman diagram, need

$$tr[\gamma_5 S_T p_{hT} \cdots] = i\varepsilon_{\mu\nu\rho\lambda} S_T^{\mu} p_{hT}^{\nu} \cdots$$

- Projector for polarized proton $(p+m)\gamma_5 S_T$
- Projector for produced hadron $p_h + m_h$
- But need strong phase to make cross section real

Phase at two loops

Phase comes from on-shell internal particles

$$\frac{1}{k^2 + i\varepsilon} = \frac{P}{k^2} - i\pi\delta(k^2)$$

- Need time-like final-state particles with gluon exchanges (FSI) between them
- Nonvanishing phase appears in box diagram

time-like final state

on-shell internal particles give – strong phase

final-state interaction

Brodsky, Hwang, Schmidt 2002

Collinear to initial state

 Picking up plus signs, ie., (l1=+,l2=+), gluons collimate to polarized proton

$$\begin{split} l_{1,2}^{+} &\sim O(p_{2}^{+}) >> l_{1T,2T} >> l_{1,2}^{-} \\ p_{1} - l_{2} &\approx p_{1}^{+} - p_{2}^{+} &\longleftarrow & \text{collinear} \\ p_{2} - l_{1} &\approx p_{2} - l_{2} \approx p_{2}^{-} \end{split}$$

- Phase goes into Sivers function
- FSI gluon is soft

Parton transverse momentum

 Sivers function demands inclusion of parton transverse momentum

• This correlation determines preferred direction of k_T for polarized proton , which then propagates into p_h

Collinear to final state

 Picking up minus signs, ie., (-,-), gluons collimate to produced hadron

$$l_{1,2}^- \sim O(p_2^-) >> l_{1T,2T} >> l_{1,2}^+$$
 collinear
 $p_2 - l_1 \sim O(p_2^-), \quad p_2 - l_2 \sim O(p_2^-) <$

• Phase goes into Collins fragmentation function

Collins 1993

Collins function

- Eikonalize incoming quark and insert Fierz identity
- $\gamma_5 \sigma^{-\gamma}$ dominates
- Collins function demands inclusion of parton k_T
- LO hard kernel demands projector for initial state

 $\gamma_5 \sigma$

 $(p+m)\gamma_{z}S_{\tau}$

Twist-2 TMDs

$$\begin{split} \Phi^{[\gamma^+]} &= f_1 - \frac{\epsilon_T^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M} f_{1T}^{\perp}, \\ \Phi^{[\gamma^+\gamma_5]} &= S_L g_{1L} - \frac{p_T \cdot S_T}{M} g_{1T}, \\ \Phi^{[i\sigma^{\alpha+}\gamma_5]} &= S_T^{\alpha} h_1 + S_L \frac{p_T^{\alpha}}{M} h_{1L}^{\perp} \\ \text{transversity} &\qquad - \frac{p_T^{\alpha} p_T^{\rho} - \frac{1}{2} p_T^2 g_T^{\alpha\rho}}{M^2} S_{T\rho} h_{1T}^{\perp} - \frac{\epsilon_T^{\alpha\rho} p_{T\rho}}{M} h_1^{\perp} \end{split}$$

Boer, Mulders 1997 Goeke, Meta, Schlegel 2005 Bacchetta et al., 2007 in the case of FFs, it is Collins function

Global determination of Sivers and Collins functions from data

Cammarota et al, 2021

Phase in hard kernel

- For other sign combinations, or finite transverse momenta
- phase appears in hard kernel

- How to extract this phase?
- Use $\gamma_5 \gamma^{\perp}$
- A new contribution to SSA

2-parton twist-3 TMDs

$$\begin{split} \Phi^{[i\gamma_5]} &= \frac{M}{P^+} \bigg[S_L e_L - \frac{p_T \cdot S_T}{M} e_T \bigg], \qquad \Phi^{[1]} = \frac{M}{P^+} \bigg[e - \frac{\epsilon_T^{\rho\sigma} p_{T\rho} S_{T\sigma}}{M} e_T^{\perp} \bigg] \\ \Phi^{[\gamma^{\alpha}]} &= \frac{M}{P^+} \bigg[- \epsilon_T^{\alpha\rho} S_{T\rho} f_T - S_L \frac{\epsilon_T^{\alpha\rho} p_{T\rho}}{M} f_L^{\perp} \\ &- \frac{p_T^{\alpha} p_T^{\rho} - \frac{1}{2} p_T^2 g_T^{\alpha\rho}}{M^2} \epsilon_{T\rho\sigma} S_T^{\sigma} f_T^{\perp} + \frac{p_T^{\alpha}}{M} f^{\perp} \bigg] \\ \Phi^{[\gamma^{\alpha}\gamma_5]} &= \frac{M}{P^+} \bigg[S_T^{\alpha} g_T^{\perp} + S_L \frac{p_T^{\alpha}}{M} g_L^{\perp} \\ &- \frac{p_T^{\alpha} p_T^{\rho} - \frac{1}{2} p_T^2 g_T^{\alpha\rho}}{M^2} S_{T\rho} g_T^{\perp} - \frac{\epsilon_T^{\alpha\rho} p_{T\rho}}{M} g^{\perp} \bigg] \\ \Phi^{[i\sigma^{\alpha\beta}\gamma_5]} &= \frac{M}{P^+} \bigg[\frac{S_T^{\alpha} p_T^{\beta} - p_T^{\alpha} S_T^{\beta}}{M} h_T^{\perp} - \epsilon_T^{\alpha\beta} h \bigg], \\ \Phi^{[i\sigma^{+-}\gamma_5]} &= \frac{M}{P^+} \bigg[S_L h_L - \frac{p_T \cdot S_T}{M} h_T \bigg], \qquad \begin{array}{c} \text{Boer, Mulders 1997} \\ \text{Goeke, Meta, and Schlegel 2005} \\ \text{Bacchetta et al., 2007} \end{array}$$

 Φ

Factorization of new contribution

- Unpolarized twist-2 fragmentation function
- Polarized quark scattered into direction preferred by correlation

$$tr[\gamma_5\gamma^{y}p_{hT}\gamma^{+}\gamma^{-}\cdots]=i\varepsilon_{yx+-}p_{hT}^{x}\cdots$$

• 2-parton twist-3 TMD or PDF g_T

gT contribution

- Focus on pT > 1 GeV, use (collinear) PDFs
- gT, twist-3, but related to twist-2 helicity PDF

 gT well constrained, contribution is in fact not numerically important at low pT

Hard kernel

• Hadronic tensor $W_{\mu\nu} = \sum_{a=q,\bar{q},g} \int \frac{dz}{z^2} D_1^a(z) w_{\mu\nu}^a$

$$w_{\mu\nu} \approx \frac{M_N}{2} \int dx g_T(x) S_T^{\alpha} \left(\frac{\partial}{\partial k_T^{\alpha}} \text{Tr}[\gamma_5 \not k S_{\mu\nu}^{(0)}(k)] \right)_{k=xP}$$

derivative causes complexity

Gluon-initiated channel

• Include gluon-initiated contribution at the same order $d\Delta\sigma$

 $\frac{d\Delta\sigma}{dP_{h\perp}} \sim \mathcal{G}_{3T}(x) \otimes H_g \otimes D_1(z)$ $\sim \Delta G(x) \otimes H_g \otimes D_1(z)$

Harmonics

Kinematics

• COMPASS kinematics

 $0.003 \le x_B \le 0.7$, $0.1 \le y \le 0.9$, $0.2 \le z_f \le 1$ $Q^2 > 1 \text{ GeV}^2$, $W^2 > 25 \text{ GeV}^2$ $W^2 = (q+P)^2$ $\sqrt{S_{\mu p}} \approx 17.4 \text{ GeV}$

• Electron-ion Collider (EIC) kinematics $0.1 < x_B < 0.9$ 0.01 < y < 0.95 $Q^2 > 1 \text{ GeV}^2$

• Adopt NNPDF, JAM inputs for PDFs, FFs $\mu = P_{hT}$

uncertainty from PDFs, FFs and $0.5 < \mu/P_{hT} < 2.0$

Discussions

- SSA from JAM, order of 1%, > NNPDF
- Our Sivers asymmetry has similar magnitude, but opposite sign compared to COMPASS data
- There cannot be single source, like Sivers function, expected for low pT processes
- More PDF inputs need to be included in global analysis on SSA
- Our Collins asymmetry is negligibly small

SSA insensitive to COM energy

energy dependence cancels between numerator and denominator

Summary

- There are many sources of SSA at subleading level in collinear or TMD factorizations
- gT PDF contributes with 2-loop hard kernel
- Both quark- and gluon-initiated channels computed, latter being negligible
- Our Sivers asymmetry reaches 2% at pT=1 GeV, but opposite in sign compared to COMPASS data
- There cannot be single source at low pT
- More sources need to be included in global analysis on SSA
- Some other harmonics also reach 2%

Back-up slides

Sign change of Sivers function

Sign-mismatch problem

• No sign flip seen in $p^{\uparrow}p \rightarrow \pi + X$

 $^{x}_{0}^{x}$ correlation Q=2 GeV function for polarized 0 proton, -0.05 assumed to dominate -0.1 u-quark 0.2 0.8 0.4 0.6 0 x $T_F^q(x,x) = -\int d^2 \vec{p}_\perp \frac{\vec{p}_\perp^2}{M} f_{1T}^{\perp q}(x, \vec{p}_\perp^2) \Big|_{\text{SIDIS}}$

Kang, Qiu, Vogelsang, Yuan 2011

expectation from SIDIS data (HERMES, COMPASS) under sign flip

result extracted from data (E704, STAR, PHENIX, BRAHMS)

• Now there are other twist-3 contributions...

Sivers Asymmetry in Drell-Yan: Hint of Sign Change!

Spin-transverse-momentum correlation

produced hadron tends to move to right

Mechanism

- Transversity distribution for polarized proton determines preferred direction of quark spin
- This polarized quark scattered into final state
- Collins function then determines direction of polarized quark (produced hadron) preferred by correlation
- Without preferred direction of quark spin from initial state, Collins function cannot work

Factorization of transverse gluon

- As soft gluon carries transverse polarization, outgoing quark line cannot be eikonalized
- Collinear divergence in (+,+) combination goes into three-parton TMD, whose collinear version is Efremov-Teryaev-Qiu-Sterman (ETQS) function Efremov, Teryaev 1982; Qiu, Sterman, 1991
- Similar construction for three-parton fragmentation functions

Kang, Yuan, Zhou, 2010

ETQS function

 Twist-3 ETQS function is PDF, not TMD, regarded as leading source of SSA in collinear factorization applicable to large pT

so-called hard pole contribution to SSA

Lesson learned

- Sivers, ETQS, Collins functions all have same origin, resulting from different factorization
- Siver, Collins contributions start from LO hard kernel; ETQS starts from NLO
- If allowed to go to higher-order hard kernels, other projectors can be used
- data with Q ~ few GeV (such as COMPASS) and pT ~ 1GeV, hard kernel effect may be sizable
- Hard kernel is process-dependent
- Rich phenomenology!

JAM > NNPDF

q->q dominates at large zf qg dominates at small zf

qq, qg opposite in sign, because q,g fly back-to-back

gg negligible

qq from JAM larger than NNPDF qg from JAM decreases faster than NNPDF

