gT contribution to single-spin asymmetry in SIDIS

Hsiang-nan Li

Academia Sinica, Jan. 18, 2022
In collaboration with S. Benic, Y. Hatta, A. Kaushik 2109.05440

Single transverse spin asymmetry (SSA)

- Consider a transversely polarized proton scatter off an unpolarized proton or electron

$$
A_{N} \equiv \frac{L-R}{L+R}=\frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}}
$$

$$
x_{F} \sim 2 P_{z} / \sqrt{s}
$$

scaled longitudinal momentum

Mechanism

- There exists correlation proportional to

$$
\varepsilon_{\mu \nu \rho \lambda} S_{T}^{\mu} p_{h T}^{\nu} \cdots
$$

- To generate such term in Feynman diagram, need

$$
\operatorname{tr}\left[\gamma_{5} S_{T} p_{h T} \cdots\right]=i \varepsilon_{\mu \nu \rho \lambda} S_{T}^{\mu} p_{h T}^{v} \cdots
$$

- Projector for polarized proton $\left(p+m\left(\gamma_{5} S_{T}\right)\right.$
- Projector for produced hadron $p_{h}+m_{h}$
- But need strong phase to make cross section real

Phase at two loops

- Phase comes from on-shell internal particles

$$
\frac{1}{k^{2}+i \varepsilon}=\frac{P}{k^{2}}-i \pi \delta\left(k^{2}\right)
$$

- Need time-like final-state particles with gluon exchanges (FSI) between them
- Nonvanishing phase appears in box diagram time-like final state
on-shell internal particles give strong phase

final-state interaction

Brodsky, Hwang, Schmidt 2002

Kinematics for phase

$$
\begin{gathered}
q=p_{2}-p_{1}, \quad p_{2}=\left(p_{2}^{+}, p_{2}^{-}, 0_{T}\right) \quad p_{1}^{+}, p_{2}^{-} \gg p_{2}^{+} \gg \Lambda_{Q C D} \\
\begin{array}{c}
p_{2}^{2}>0 \\
\text { time-like }
\end{array} p_{1}=\left(p_{1}^{+}, 0,0_{T}\right) \\
l_{2}^{-}=l_{2 T}^{2} /\left(2 l_{2}^{+}\right) \quad l_{1}^{+}=\frac{1}{2}\left(p_{2}^{+} \pm \sqrt{p_{2}^{+2}-2 \frac{p_{2}^{+}}{p_{2}^{-}} l_{1 T}^{2}}\right) \\
l_{2}^{+}=\frac{1}{2}\left(p_{2}^{+} \pm \sqrt{p_{2}^{+2}-2 \frac{p_{2}^{+}}{p_{2}^{-}} l_{2 T}^{2}}\right)
\end{gathered}
$$

Collinear to initial state

- Picking up plus signs, ie., ($11=+, 12=+$), gluons collimate to polarized proton

$$
\begin{aligned}
& l_{1,2}^{+} \sim O\left(p_{2}^{+}\right) \gg l_{1 T, 2 T} \gg l_{1,2}^{-} \\
& p_{1}-l_{2} \approx p_{1}^{+}-p_{2}^{+} \\
& p_{2}-l_{1} \approx p_{2}-l_{2} \approx p_{2}^{-}
\end{aligned}
$$

- Phase goes into Sivers function
- FSI gluon is soft

Sivers function

- Eikonalize outgoing quark and insert Fierz identity
(twist-2) contribution

$$
\begin{aligned}
& I_{i j} I_{l k}=\frac{1}{4} I_{i k} I_{l j}+\frac{1}{4}\left(\gamma^{\alpha}\right)_{i k}\left(\gamma_{\alpha}\right)_{l j} \\
+ & \frac{1}{4}\left(\gamma^{5} \gamma^{\alpha}\right)_{i k}\left(\gamma_{\alpha} \gamma^{5}\right)_{l j}+\frac{1}{4}\left(\gamma^{5}\right)_{i k}\left(\gamma^{5}\right)_{l j} \\
+ & \frac{1}{8}\left(\gamma^{5} \sigma^{\alpha \beta}\right)_{i k}\left(\sigma_{\alpha \beta} \gamma^{5}\right)_{l j} \text { give dominant }
\end{aligned}
$$

Parton transverse momentum

- Sivers function demands inclusion of parton transverse momentum

$(p+m))_{S} S_{T}$
- This correlation determines preferred direction of k_{T} for polarized proton, which then propagates into p_{h}

Collinear to final state

- Picking up minus signs, ie., (-,-), gluons collimate to produced hadron

$$
\begin{aligned}
& l_{1,2}^{-} \sim O\left(p_{2}^{-}\right) \gg l_{1 T, 2 T} \gg l_{1,2}^{+} \\
& p_{2}-l_{1} \sim O\left(p_{2}^{-}\right), \quad p_{2}-l_{2} \sim O\left(p_{2}^{-}\right) \\
& p_{1}-l_{2} \text { highly off-shell }
\end{aligned}
$$

- Phase goes into Collins fragmentation function

Collins 1993

Collins function

- Eikonalize incoming quark and insert Fierz identity
- $\gamma_{5} \sigma^{-y}$ dominates

- Collins function demands inclusion of parton k_{T}
- LO hard kernel demands
- Transversity distribution defined

$$
(p+m) \gamma_{5} S_{T}
$$

Twist-2 TMDs

$$
\begin{aligned}
& \qquad \Phi^{\left[\gamma^{+}\right]}=f_{1}-\frac{\epsilon_{T}^{\rho \sigma} p_{T \rho} S_{T \sigma}}{M} f_{1 T}^{\perp}, \\
& \qquad \Phi^{\left[\gamma^{+} \gamma_{5}\right]}=S_{L} g_{1 L}-\frac{p_{T} \cdot S_{T}}{M} g_{1 T}, \\
& \Phi^{\left[i \sigma^{\alpha+} \gamma_{5}\right]}=S_{T}^{\alpha}\left(h_{1}+S_{L} \frac{p_{T}^{\alpha}}{M} h_{1 L}^{\perp}\right. \\
& \begin{array}{ll}
\text { transversity function } \\
\text { function } & -\frac{p_{T}^{\alpha} p_{T}^{\rho}-\frac{1}{2} p_{T}^{2} g_{T}^{\alpha \rho}}{M^{2}} S_{T \rho} h_{1 T}^{\perp}-\frac{\epsilon_{T}^{\alpha \rho} p_{T \rho}}{M} h_{1}^{\perp}
\end{array} \\
& \begin{array}{ll}
\text { Boer, Mulders 1997 } \\
\begin{array}{ll}
\text { Goeke, Meta, Schlegel 2005 } \\
\text { Bacchetta et al., 2007 }
\end{array} & \text { it is Collins function }
\end{array}
\end{aligned}
$$

Global determination of Sivers and Collins functions from data

Cammarota et al, 2021

Phase in hard kernel

- For other sign combinations, or finite transverse momenta
- phase appears in hard kernel

- How to extract this phase?
- Use $\gamma_{5} \gamma^{\perp}$
- A new contribution to SSA

2-parton twist-3 TMDs

$$
\Phi^{\left[i \gamma_{5}\right]}=\frac{M}{P^{+}}\left[S_{L} e_{L}-\frac{p_{T} \cdot S_{T}}{M} e_{T}\right], \quad \Phi^{[1]}=\frac{M}{P^{+}}\left[e-\frac{\epsilon_{T}^{\rho \sigma} p_{T \rho} S_{T \sigma}}{M} e_{T}^{\perp}\right]
$$

$$
\Phi^{\left[\gamma^{\alpha}\right]}=\frac{M}{P^{+}}\left[-\epsilon_{T}^{\alpha \rho} S_{T \rho} f_{T}-S_{L} \frac{\epsilon_{T}^{\alpha \rho} p_{T \rho}}{M} f_{L}^{\perp}\right.
$$

$$
\left.-\frac{p_{T}^{\alpha} p_{T}^{\rho}-\frac{1}{2} p_{T}^{2} g_{T}^{\alpha \rho}}{M^{2}} \epsilon_{T \rho \sigma} S_{T}^{\sigma} f_{T}^{\perp}+\frac{p_{T}^{\alpha}}{M} f^{\perp}\right]
$$

$$
\Phi^{\left[\gamma^{\alpha} \gamma_{5}\right]}=\frac{M}{P^{+}} S_{T}^{\alpha} g_{T}+S_{L} \frac{p_{T}^{\alpha}}{M} g_{L}^{\perp}
$$

$$
\left.-\frac{p_{T}^{\alpha} p_{T}^{\rho}-\frac{1}{2} p_{T}^{2} g_{T}^{\alpha \rho}}{M^{2}} S_{T \rho} g_{T}^{\perp}-\frac{\epsilon_{T}^{\alpha \rho} p_{T \rho}}{M} g^{\perp}\right]
$$

$\Phi^{\left[i \sigma^{\alpha \beta} \gamma_{5}\right]}=\frac{M}{P^{+}}\left[\frac{S_{T}^{\alpha} p_{T}^{\beta}-p_{T}^{\alpha} S_{T}^{\beta}}{M} h_{T}^{\perp}-\epsilon_{T}^{\alpha \beta} h\right]$,
$\Phi^{\left[i \sigma^{+-} \gamma_{5}\right]}=\frac{M}{P^{+}}\left[S_{L} h_{L}-\frac{p_{T} \cdot S_{T}}{M} h_{T}\right]$,

Boer, Mulders 1997
Goeke, Meta, and Schlegel 2005 Bacchetta et al., 2007

Factorization of new contribution

- Unpolarized twist-2 fragmentation function
- Polarized quark scattered into direction preferred by correlation

$$
\operatorname{tr}\left[\gamma_{5} \gamma^{y} p_{h T} \gamma^{+} \gamma^{-} \cdots\right]=i \varepsilon_{y x+-} p_{h T}^{x} \cdots
$$

- 2-parton twist-3 TMD or PDF g_{T}

gT contribution

- Focus on $\mathrm{pT}>1 \mathrm{GeV}$, use (collinear) PDFs
- gT , twist-3, but related to twist-2 helicity PDF

$$
g_{T}(x)=\int_{x}^{1} \frac{\sim\langle\bar{\psi} g F \psi\rangle}{x^{\prime}} \Delta q\left(x^{\prime}\right)+(\text { genuine twist three })
$$

- gT well constrained, contribution is in fact not numerically important at low pT

Hard kernel

- Hadronic tensor $W_{\mu \nu}=\sum_{a=q, a, s} \int \frac{d z}{z^{D}} D_{1}^{p}(z) u_{\mu u}^{e}$ $w_{\mu \nu} \underset{\uparrow}{\approx} \frac{M_{N}}{2} \int d x g_{T}(x) S_{T}^{\alpha}\left(\frac{\partial}{\partial k_{T}^{\alpha}} \operatorname{Tr}\left[\gamma_{5} / k S_{\mu \nu}^{(0)}(k)\right]\right)_{k=x P}$ WW

derivative causes complexity

Gluon-initiated channel

- Include gluon-initiated contribution at the same order

$$
\begin{aligned}
\frac{d \Delta \sigma}{d P_{h \perp}} & \sim \mathcal{G}_{3 T}(x) \otimes H_{g} \otimes D_{1}(z) \\
& \sim \Delta G(x) \otimes H_{g} \otimes D_{1}(z)
\end{aligned}
$$

Harmonics

$$
A_{U T}^{\sin \left(\alpha \phi_{h}+\beta \phi_{S}\right)}=\frac{2 \int_{0}^{2 \pi} d \phi_{h} d \phi_{S} \sin \left(\alpha \phi_{h}+\beta \phi_{S}\right)\left[d \sigma\left(\phi_{h}, \phi_{S}\right)-d \sigma\left(\phi_{h}, \phi_{S}+\pi\right)\right]}{\int_{0}^{2 \pi} d \phi_{h} d \phi_{S}\left[d \sigma\left(\phi_{h}, \phi_{S}\right)+d \sigma\left(\phi_{h}, \phi_{S}+\pi\right)\right]}
$$

Kinematics

- COMPASS kinematics

$$
\begin{aligned}
& 0.003 \leq x_{B} \leq 0.7, \quad 0.1 \leq y \leq 0.9, \quad 0.2 \leq z_{f} \leq 1 \\
& Q^{2}>1 \mathrm{GeV}^{2}, \quad W^{2}>25 \mathrm{GeV}^{2} \quad W^{2}=(q+P)^{2} \\
& \sqrt{S_{\mu p}} \approx 17.4 \mathrm{GeV}
\end{aligned}
$$

- Electron-ion Collider (EIC) kinematics

$$
0.1<x_{B}<0.9 \quad 0.01<y<0.95 \quad Q^{2}>1 \mathrm{GeV}^{2}
$$

- Adopt NNPDF, JAM inputs for PDFs, FFs

$$
\mu=P_{h T}
$$

COMPASS

COMPASS

uncertainty from PDFs, FFs and $0.5<\mu / P_{h T}<2.0$

Discussions

- SSA from JAM, order of 1\%, > NNPDF
- Our Sivers asymmetry has similar magnitude, but opposite sign compared to COMPASS data
- There cannot be single source, like Sivers function, expected for low pT processes
- More PDF inputs need to be included in global analysis on SSA
- Our Collins asymmetry is negligibly small

SSA insensitive to COM energy

energy dependence cancels between numerator and denominator

predictions for various harmonics, some reach 2\%

Summary

- There are many sources of SSA at subleading level in collinear or TMD factorizations
- gT PDF contributes with 2-loop hard kernel
- Both quark- and gluon-initiated channels computed, latter being negligible
- Our Sivers asymmetry reaches 2% at $\mathrm{pT}=1 \mathrm{GeV}$, but opposite in sign compared to COMPASS data
- There cannot be single source at low pT
- More sources need to be included in global analysis on SSA
- Some other harmonics also reach 2\%

Back-up slides

Sign change of Sivers function

Sign-mismatch problem

- No sign flip seen in $p^{\uparrow} p \rightarrow \pi+X$

Kang, Qiu, Vogelsang, Yuan 2011

- Now there are other twist-3 contributions...

Sivers Asymmetry in Drell-Yan: Hint of Sign Change!
 DGLAP (2016)

M. Anselmino et al., arXiv:1612.06413

Spin-transverse-momentum correlation

$$
f_{q / p \uparrow}\left(x, k_{T}, \overrightarrow{S_{T}}\right)=f_{q / p}\left(x, k_{T}\right)-\frac{1}{M} f_{1 T}^{\perp q}\left(x, k_{T}\right) \overrightarrow{S_{T}} \cdot\left(\hat{p}_{h} \times k_{T}\right)
$$

Transversely-polarized proton
produced hadron tends to move to right

Mechanism

- Transversity distribution for polarized proton determines preferred direction of quark spin
- This polarized quark scattered into final state
- Collins function then determines direction of polarized quark (produced hadron) preferred by correlation
- Without preferred direction of quark spin from initial state, Collins function cannot work

Factorization of transverse gluon

- As soft gluon carries transverse polarization, outgoing quark line cannot be eikonalized
- Collinear divergence in (+,+) combination goes into three-parton TMD, whose collinear version is Efremov-Teryaev-Qiu-Sterman (ETQS) function Efremov, Teryaev 1982; Qiu, Sterman, 1991
- Similar construction for three-parton fragmentation functions

Kang, Yuan, Zhou, 2010

ETQS function

- Twist-3 ETQS function is PDF, not TMD, regarded as leading source of SSA in collinear factorization applicable to large pT
so-called hard pole contribution to SSA

Lesson learned

- Sivers, ETQS, Collins functions all have same origin, resulting from different factorization
- Siver, Collins contributions start from LO hard kernel; ETQS starts from NLO
- If allowed to go to higher-order hard kernels, other projectors can be used
- data with Q ~ few GeV (such as COMPASS) and pT $\sim 1 \mathrm{GeV}$, hard kernel effect may be sizable
- Hard kernel is process-dependent
- Rich phenomenology!

JAM > NNPDF

$q->q$ dominates at large zf
qg dominates at small zf
qq, qg opposite in sign, because q,g fly back-to-back
gg negligible
qq from JAM larger than NNPDF qg from JAM decreases faster than NNPDF

Sivers asymmetry from NNPDF can flip sign between small and large zf bins

