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The Axial Anomaly

Background

e Unlike the vector current the ,
i is not conserved.! Massless case:
Js

€z =
e It was first thought that classically 9,,jt = 0. But, due to
quantum effects, chiral symmetry broken.
|
Y

— 2,
d(Nsg — Ns.) _/d3er.B
dt 272

Ns(r/r)y num of right or left
handed (spin and momentum
aligned) fermions

D. E. Kharzeev, Ann. of Phys. 325, 205218 (2010)

15. L. Adler, Phys. Rev. 177, 2426 (1969); J. S. Bell, R. Jackiw, I/ Nuovo Cimento A 60, 47.



maly Environments

Semimetals

3D Dirac semimetal

e Relativistic fermionic dispersion (Odhs Nas)

relation and anomaly observed -
directly in Weyl Semimetals.

e Need to probe the anomaly in
QED and QCD.

QED - High Powered Lasers ? =
M. Neupane, et. al., Nat. Comm. 10.1038 (2014)
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Pair production

M. Marklund and J. Lundin, Eur.Phys.J.D 55, 319326 (2009)
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K.Fukushima, D.Kharzeev, H.Warringa, PRL 104,212001(2010)
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The Berry Phase and Chiral Kinetic Theory
Background

e Can we see the anomaly at a classical level?
With the 2 we can!

e If the system evolves slowly (adiabatically) enough it will stay
fixed in the same eigenstate.

o Consider for Weyl fermions in quantum mechanics with a
positive helicity eigenstate?

p(t) o ut(t) = [p(t)| u™ (1)

In addition to a dynamic factor fttf dt|p| if we take a closed
path such that p(t;) = p(tr) we will acquire an additional
phase

the Berry phase!

2M. V. Berry, Royal Soc. London. A. 392, 45 (1984).

3, . . . . .
| will show this later in the worldline formalism.



The Berry Phase and Chiral Kinetic Theory
Background

¢ Phase space evolution of a gas of Fermi particles (but with
chiral effects) — 4

e Liouville equation for distribution f for L/R handed particles
w/o collisions:

P 9
R A S A T
o Tox X T g PO

e Introduce Berry phase for chiral fermions

o o .., 0 . ,
af’+&-z"x+8—p-f’p:E-B/thxu+Vpu+

e Aquire a collision-like term with Berry curvature

e Makes possible a non-convervation of particle number into the
phase space!

e Can write down a current agreeing with anomaly.

4M. A. Stephanov, Y. Yin, Phys. Rev. Lett. 109, 162001 (2012),



The Worldline Formalism
Background

o Goal: To write a chiral kinetic theory at the classical level but
with Lorentz covariance!

e How to go from 3 dimensions in QM to 3+1 dimensions?
%

e For example let's look at the QED effective action in a
background field, A*.5

/ DyDpe’ [ IXP=mY — det[i) — m] = ™A

S L Ny
MAl = () {\?) . ; o

\/

@ Calculations to all orders in the gauge field!
® Wealth of physics in compact expressions, e.g.:
e Schwinger effect (a vacuum instability) in Im[[A]
o Light-by-light scattering in Rel[A]
e Can also calculate observables like the chiral current ¥y ~s1)

5C. Schubert, Phys. Rept. 10.101 (2001).
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The Phase Space Worldline Representation

Worldline Formalism

e We can write the worldline formalism in
representation® (to find Berry phase in momentum space)

—h )
ih(ﬁ—%A—mc+ie y

— /Oo dT i (x| e~ #(II+ZACI+mAT | )
0

G(A, x,y) = (x|

e The path integral form of the Green's function is

oo x(T)=x Dp
G(A x,y _i/ dT/ Dx/ensAWD
( ) 0 X(O):y 2mh

] e i ]
= Tl—mc — el A, xH —
Sa /0 d [ C — puX c uX ]7 Wp Pexp{ /0 dTp}

o All of the Berry phase contained in Wp!

e Can also write a

6A. Migdal, Nuclear Physics B 265, 594 (1986).
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Worldline Chiral Kinetic Theory for Weyl Fermions

e To begin, let's look at the simpler massless Weyl fermion case,
just the left-handed case, i.e., stemming from the Lagrangian:

ih / d*x iz, DMy 3" = (Ip,—0o')
e Same Green's function as before but with
. T
Wp = Wy = Pexp{l/ dTpME'“}
h Jo

e Insert complete sets of unitary transform, U, into the path
ordered element, where UTp,ﬁ“U = p°L, + |p|os. P is
already diagonal and does not contribute to Berry's phase

e The transformation matrix is U = (u™, u™) with

_i 0 _i .0

_ e %P cos 2 —e %P sin £

= 2 ut = 2
- .0 - [
sin =2 cos 2
2 2

Here the momentum is in spherical coordinates
p = |p|(sin 8, coswp, sin B, sin wp, cos B,)



Worldline Chiral Kinetic Theory for Weyl Fermions

By = —ihutVpu® |, S{, =V, x By = :Fh2‘ g

The path ordered element reads

i T
trWw ~ Zexp{h/o dr[p® + |p| — B}, - p]}
+

From which the worldline action (+ helicity) reads

:
. € . .
s [ erlonit~ S 1o -85
0

Then find the following equations of motion

. € . .
PMZEFWXV x-p+SW><p =1

These are the exact same equations of motion for the
!

e We can find a chiral kinetic theory in the exact same way’.

7M. Stephanov and Y. Yin Phys. Rev. Lett. 109, 162001 (2012).




Worldline Chiral Kinetic Theory for Weyl Fermions

e How does this lead to an anomaly?
8

E.O.M. become:
(1+B-S{)x=p+E xSy, +B(Sy; - p)
(1+B-S{,)p=E+pxB+S{,(E-B)

e Incompressible phase space measure:

(1+ B S§)d*xdp/(2r)’

Modified distribution function: f' = (1+ B - S{;)f
The phase space current is j* = [ d3p(f’, f'x)/(27)3, we find

0 0 0
—f+ = . f's+— .fp=E-B .S+
ot +8x x+8p P Vp - Sw
E-B
o
Or 472

8M. Stephanov and Y. Yin Phys. Rev. Lett. 109, 162001 (2012).
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Berry Phase for Dirac Fermions
Worldline CKT for Dirac Fermions

o Let's extend our scope to !
e "Diagonalize” p in a Lorentz covariant way using eigenspinos.

sips=pro p=/pP'pp (p—pP)ui=0 (p+p)v;=0
1 .
s = ﬁ[ul’ u, vi, vo|(v0 — 7s) Weyl representation
e For the adiabatic theorem keep only @;i; and v;v; parts.
e The can be found (where p, = p,/p)
h o1

B#:,‘,
8po+p

e And the associated curvature is
S = 9PEBY — OPVBM + ih~'[BH, B]
_ h (B + g 0)par — (p+ po)r
8 p2(po + p)

where for generic tensor AWVl = A — Ave

I py, Cow = [V W] +70[V0s W0




Barut Zanghi Spinors
Worldline CKT for Dirac Fermions
e We now have an “action” that is matrix weighted,
Sa + pyo — Bup*... How to define equations of motion?

With a coherent state! Use a spinor construction of
Path ordering — path integral over spinors

T _ R o
trPer Jo drlPro—Bup"] — /DZDZQ,Q Jo drzlpro—Bupt+ing]z

e zand z = ZT’}/O are like the QED and QCD fermions, 1.

z~

e We can see the similarity transform s € SO(1, 3)
e However:

@ z is just a vector of 4 complex (and commutable!) numbers.
@® [ DzDz integrates over all 8 independent variables.



Worldline Chiral Kinetic Theory for Dirac Fermions

Worldline CKT for Dirac Fermions

o After the similarity transform the worldline action with the
Berry phase reads:

-
Sp = / dT[—mc—puk“—EAMX“+2p'yoz—EBuzp“+ih22]
0 Cc

e The are (with ‘bars’
representing, e.g., Sy, = 25,2, and x = d/dT)
. n — = . . e .
Xu = PpY0 — S,uupl/ ) Py = c MVXU )

. i ] . i )
zZ= —ﬁZ(PVO - Bup'), z= %(PWO - Bup)z

(Recall 3-dimensional: 9% = p S, - 9 and e — e, o)
e Must invert QW = guw + gswpc;_

1~ v 1: Y2 1_ v
II:—F = —ZFMVFPL s /=§ = *ZS;UJSH ) I;F = ESNVF#

e e\2
VAetG =1 Ige (E) leplzs



Worldline Chiral Kinetic Theory for Dirac Fermions

Worldline CKT for Dirac Fermions

e We can find for the

VdetGx, = [gWJr FuoS }/3”’?0,
VdetGp, = [ W+( )2/,*:—5“”};3”%

e Conserved phase space measure: dup = WL’“’QZ

e Phase space distribution function satisfies a Boltzmann
equation, 2f = [% + 51D, + PPOR + 2,07 + z,,aﬂ f=0

o Write a general f up to a bilinear term in B.Z. spinors:
f(x,p,z,2) fz{S + 5P + vV + s A+ 0 THY }z

e Define a divergence of the velocity, only the axial vector
parts remain! Anomaly for distribution A.

d*pdQ, ) e\?2 d*p 2h
au/ o \/detgxuf_—<z> /ﬁF/(

A
2m)* p3(po + p)
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Axial-Ward ldentity
Fujikawa Method on the Worldline

e Perform the 9 on the BZ spinor coherent
state to find the axial Ward identity.

[ dT Dp is
I_A = h —_ D e At
[] I/O Tjgx/%]_heh ™Wh
trWp = j{DZDZe;L Iy drizpz+inzz]
e Perform the axial rotation z — ()% z, and absorb phase
tI‘WD — det [e2i9’75] %'DQ eLr'L foT dr[zpthéieZiew,YSZJH-hzez,-gWS2]

e Write the axial rotation as a Hamiltonian transformation:
P BN e—IG’YspeI%s + ,'e—IG“/sd%_eIQWS ~
e Associated functional form of the effective action:
. (S i
[[A] = —2hTr0vys — ikTrIn[p — —A+ 9,0757" — €275 mc]
c

This is the form which produces the axial Ward identity.

9K. Fujikawa, Phys. Rev. Lett. 42,1195 (1979); Phys. Rev. D 21, 2848 (1980).




Noncovariant Berry Phase
Fujikawa Method on the Worldline

e Let's consider another (non-covariant) transform which takes

§1ps =sp

+1
4

o Like with the axial rotation, take the following transformation

7T75i5

§= \%(14 —75P) = exp [— on

zZ— 5z

trWp = det [e_(gnfl)msf”] ?{DQZ
I T . . . (8n+1) = .
X exp h/ dT[EpZ + ihz85z + ihze™ 2 75?’2]
0

e Noncovariant Berry phase transformation has similar structure
as axial rotation.



Conclusions

Berry Phase on the Phase Space Worldline

@® How to develope a classical and covariant chiral kinetic
theory? —

® Weyl fermions reduce in dimension — quantum mechanics

© Dirac fermions

o Non-Abelian Berry phase
e Barut Zanghi spinors
e Covariant phase space evolution!

Thank you for your time and attention!




Index Theorem
Backup

o Adiabaticity at a classical level permitted the anomaly.
How about at the quantum level?

e Study the under the same adiabaticity that
led to a chiral kinetic theory.

e The index theorem?© counts the number of zero modes of the
fermion operator describing the non-conservation of chiral
current in the anomaly.

o While the index is normally2deﬁned11 as
In = limp—00 Trys[M2/(D° + M?)]
we use the equivalent expression

I, = lim Tr~s

li e
MI—>oo I.I,D—/W7

1OG. t Hooft, Phys. Rev. D 14, 3432 (1976); M. Atiyah, et.al., Phys. Lett. A 65, 185 (1978).
115. Vandoren and P. van Nieuwenhuizen, arXiv:0802.1862 (2008).



Index Theorem with the Berry phase
Backup

e Cast the index definition into a phase space path integral:

I, = lim tr/d4pry5 G(A, p,p)

M— oo

e In the momentum representation we have (with m—M)

G(A,p,p) = // dT/Dx/ T%e%SAWD
T
i
WDPexp{h/o dTp}

e Take a gauge transformation to arrive at the Berry phase

. T
I .
trysWp = trys P eXp{ﬁ / dr [vop — BExacwp“]}
0



Vanishing Index Theorem under Adiabaticity
Backup

e Actually we find independence of propertime T:
h d
7ﬁtr75WD = trysp( T)Wp = trysWpp(0)
= —trysp(T)Wp =0,

The adiabatic theorem should be permissible as T — oo, but

ST

) .

trysP eXP{h/ dr [yop — BAde“]} =0,
0

e And hence the index (and Chern Simons term leading to the
non-conservation of axial current)
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