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Artificial intelligence(AI) is intelligence 
exhibited by machines, mainly covers:

1. Deduction, reasoning, problem solving
2. Knowledge representation
3. Default reasoning and the qualification 

problem
4. Machine planning 
5. Machine learning

From M. Svensen & C. Bishop, “Pattern 
recognition and machine learning”

Machine Learning and Artificial Intelligence 

Pattern recognition
Density estimation 
Linear models for regression 
Linear models for classification 
Neural networks 
Kernel methods  
Sparse kernel machines

Deep
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Artificial?
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Artificial Intelligence?

The ability to understand
and learn well, and to form 
judgments and opinions 
based on reason.

The study of how to produce 
machines that have some of the 
qualities that the human mind has, 
such as the ability to understand 
language, recognize pictures, solve 
problems, and learn.

Intelligence Artificial Intelligence 
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Artificial Neural Network (ANN) 

• Artificial neural network (ANN) is a computational model 
that mimics brain functionality with artificial means.

10 From Youtube



• Structure of a Typical Neuron.

Human Signal

Adrian, 1932

“All-or-None Nerve Firing”

Artificial Neural Network (ANN) 
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Analog Digital

突觸、軸突、髓鞘、細胞核



Artificial Neural Network (ANN) 

12

Analog Digital

“All-or-None 
Nerve Firing”

• Structures of Neuron and Artificial Neuron.



Boltzmann machine Restricted Boltzmann machine 

Generative topographic map

McCulloch–Pitts model

Hopfield network

From B.-H. Juang, "Deep neural networks – a developmental perspective," APSIPA Trans. on SIP 

• Artificial Neural Network (Multiple Artificial Neurons) for 
Generation and Discrimination (Classification).

Artificial Neural Network (ANN) 
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Analyzing DNN Model and Human Brain

DNN

EEG MEG fMRI

➢ Difficult to fully understand what is inside 
➢ Analyzing functions of DNN/brain by sending input signals 

and investigating activations 

Classification 

Generation 

Classification 

Generation 

→ performance prediction
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Speech ….Easily Got Distorted



Deep Learning Based SE System 
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SE model Output

Objective 
function

Feature 
extraction

Feature 
extraction

eg. MSE (L2norm), 
L1norm,
SI-SDR

Training Phase

Noisy 
speech

Clean
speech

Waveform 
restoration

Testing Phase

The first work of DL-based SE system: [Lu et al, Interpseech 2013]. 

Enhanced 
speech

SE model

Noisy 
speech

Output

Feature 
extraction



DL-based SE for Noisy Speech
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Clean speech Noise: 2baby Crying Noise: Siren

2baby
Crying

Original Noisy MMSE (Trandtional-1) KLT (Trandtional-2) DDAE

Siren Original Noisy MMSE (Trandtional-1) KLT (Trandtional-2) DDAE



Deep Learning Based SE System 
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Objective Function 

Noise

Communication

Speech perception
• Quality
• Intelligibility

Noise

Communication

Automatic speech recognition
• Recognition accuracy      

Mean squared error (MSE) and L1 losses aim to minimize the 
differences of enhanced and target and do not directly consider 
human perception and ASR performance.

20

SE model Output

Objective 
function

Feature 
extraction

Feature 
extraction

eg. MSE (L2norm), 
L1norm

Training Phase

Noisy 
speech

Clean
speech



大學曰：心不在焉，聽而不聞
Hear but pay no attention; listen but not hear

21

聽聞

Intelligibility and Quality are different 

Intelligibility is more important than quality for 
assistive listening devices



Objective Functions for DNN and Brain

Input

• DNN Model vs. Human Brain
➢ Difficult to fully understand what is inside 
➢ What we can control: input, output, objective function

Output Input Output

D ( ),
Reference

D ( ),
Reference

DNN



Objective Function 

• STOI-based Objective Function [Fu et al, TASLP 2018]
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Average character error rate (CCR) and quality scores (MOS) of human 
subjects for (a) −3 dB and (b) −6 dB SNR.

(1) Intelligibility: FCN (MSE+STOI)> FCN (STOI)>FCN (MSE).
(2) Quality: FCN (MSE+STOI) performs the best.
(3) STOI and PESQ are not highly correlated.

Objective Function (STOI) 

• Experimental Results (Human Listening Test)
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Deep Learning Based SE System 
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SE model Output

Feature 
extraction

Noisy 
speech

Clean
speech

Feature 
extraction

Auxiliary input

This is a...

Multi-mics

Texts

Vibration

Lips [Zhao et al., ICASSP 2018],
[Le Roux, et al. ICASSP 2019],
[Germain et al., Interspeech 2019], 
[Kolbæ k et al., TASLP 2020], 
[Kim et al., Arxiv 2019],
[Valin et al., Interspeech 2020], 
[Xia et al., ICASSP 2020] ,…….

Objective 
function

(3)
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Assistive Voice Communication

• Assistive listening

• Assistive speaking  

27



Transmitter coil

Speech processor:
1. Microphone.
2. DSP chip.
3. Battery
4. Others…

Source from:
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/cochlear-implant-surgery
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Cochlear Implant 



Source from:
https://www.healthdirect.gov.au/cochlear-implant
http://www.yanthia.com/online/projlets/spear3/index.html
https://medium.com/@mosaicofminds/maps-in-the-brain-f236998d544f
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Cochlear Implant 

Traveling wave theory (Nobel Prize 1961) 

Electrodes 

https://www.healthdirect.gov.au/cochlear-implant


• The tremendous progress of CI technologies in the past three 
decades has enabled many CI users to enjoy high level of speech 
understanding in quiet.

• For most CI users, however, the performance of speech 
understanding in noise still remains challenging. 

• Deep learning based speech enhancement (SE) for CI. 

➢ F. Chen, Y. Hu, and M. Yuan, “Evaluation of Noise Reduction Methods for Sentence Recognition by 
Mandarin-Speaking Cochlear Implant Listeners,” Ear and hearing, vol. 36, no. 1, pp. 61-71, 2015.

SE for Cochlear Implant 
30
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SE for Cochlear Implant 
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SE for Cochlear Implant Simulation 

Clean 2T Noise 0dB

MMSE DDAE

• Vocoded speech



SE for Cochlear Implant Simulation 

Clean
Clean Babble Noise 0dB

MMSE DDAE

• Normal speech



Evaluation Results

Input SNR
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Clinical trial: 9 CI subjects.

Vocoder results: 10 normal hearing subjects.

(1) DL-based SE outperforms traditional 
SE approaches in terms of objective 
evaluations (NCM) and subjective 
listening tests (CI simulation).

(2)   DL-based SE outperforms traditional   
SE approaches in clinical tests.



Dysarthria, apraxia, aphasia, stuttering, 
oral surgery, vocal damage 

文言版《説文解字》：訥，言難也。

35

Speaking disorders



SE for Speaking Disorder

Liberty Times Ltd..

• Task: improving the speech intelligibility of 
surgical patients.

Taipei Veterans General Hospital

• Target: oral cancer (top five cancer for male in 
Taiwan).
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Before After After Before 



SE for Speaking Disorder

• Proposed: joint training of source and target dictionaries 
with non-negative matrix factorization (NMF): 

37

Before 
Surgery

After 
Surgery



After Conversion:

衛生紙給我 遙控器在哪裡
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Speech samples were from 
[Fu et. al., TBME 2017]

Testing Results 

GAN-based solution
[Chen et. al., Interspeech 2019]
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Original:



Dysarthric Voice Conversion 
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我們中秋節一起去賞月

➢ W.-C. Huang, K. Kobayashi, Y.-H. Peng, C.-F. Liu, Y. Tsao, H.-M. Wang, T. Toda, "A 
Preliminary Study of a Two-Stage Paradigm for Preserving SpeakerIdentity in Dysarthric 
Voice Conversion," Interspeech 2021.



Electrolaryngeal Voice Conversion 

Original

Sample 1: 他捐了很多衣物給災區
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MT-CLDNN Seq2seq ELVC

Sample 2: 那個牆上掛著一幅油畫

➢ M.-C. Yen, W.-C. Huang, K. Kobayashi, Y.-H. Peng, S.-W. Tsai, Y. Tsao, T. Toda, J.-S.
R. Jang, and H.-M. Wang, “Mandarin electrolaryngeal speech voice conversion
with sequence-to-sequence modeling, ASRU 2021”
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• Assistive Oral Communication Technologies
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From Internet.

Artificial Intelligence (AI) 

Artificial Intelligent Assistance (AIA) 

歡迎加入我們來做有溫度的科學研究



Bio-ASP Lab in CITI, Academia Sinica
(中央研究院資訊科技創新研究中心) 

Contact: yu.tsao@citi.sinica.edu.tw
More Information: http://bio-
asplab.citi.sinica.edu.tw/
Publications: 
https://www.citi.sinica.edu.tw/page
s/yu.tsao/publications_en.html
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