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Machine Learning and Artificial Intelligence

ARTIFICIAL Artificial intelligence(Al) is intelligence

INTELIGENCE exhibited by machines, mainly covers:

1. Deduction, reasoning, problem solving

2. Knowledge representation

3. Default reasoning and the qualification
problem

4. Machine planning

5. Machine Iearniﬂ\

Pattern recognition

Density estimation

Linear models for regression
Linear models for classification
Deep Neural networks

Kernel methods

Sparse kernel machines

From M. Svensen & C. Bishop, “Pattern

recognition and machine learning”
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Artificial Intelligence

/The study of how to produce \

The ability to understand machines that have some of the
and learn well, and to form qualities that the human mind has,
judgments and opinions such as the ability to understand
based on reason. language, recognize pictures, solve

K j Kproblems, and learn. j
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Artificial Neural Network (ANN)

e Artificial neural network (ANN) is a computational model
that mimics brain functionality with artificial means.

.B]b'w From Youtube



Artificial Neural Network (ANN)

e Structure of a Typical Neuron.
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Artificial Neural Network (ANN)

Structures of Neuron and Artificial Neuron.
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Artificial Neural Network (ANN)

* Artificial Neural Network (Multiple Artificial Neurons) for
Generation and Discrimination (Classification).
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From B.-H. Juang, "Deep neural networks — a developmental perspective," APSIPA Trans. on SIP




Analyzing DNN Model and Human Brain

» Difficult to fully understand what is inside
» Analyzing functions of DNN/brain by sending input signals

and investigating activations - performance prediction

Classification . Classification

Generation Generation

EEG MEG fMRI
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Speech ....Easily Got Distorted
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Deep Learning Based SE System
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LBio-ASP The first work of DL-based SE system: [Lu et al, Interpseech 2013].
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DL-based SE for Noisy Speech

Clean speech Noise: 2baby Crying Noise: Siren
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2baby
Crying
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Deep Learning Based SE System
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Objective Function
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Mean squared error (MSE) and L1 losses aim to minimize the

differences of enhanced and target and do not directly consider
BiiASP human perception and ASR performance.
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Hear but pay no attention; listen but not hear
Intelligibility and Quality are different

Intelligibility is more important than quality for
assistive listening devices



Objective Functions for DNN and Brain

e DNN Model vs. Human Brain

» Difficult to fully understand what is inside
» What we can control: input, output, objective function

Input Output Input Output

i ‘

p(1, ) D+, )

Reference Reference

LigASP



Objective Function

* STOIl-based Objective Function [Fu et al, TASLP 2018]
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Objective Function (STOI)

* Experimental Results (Human Listening Test)
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Average character error rate (CCR) and quality scores (MOS) of human
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(1) Intelligibility: FCN (MSE+STOI)> FCN (STOI)>FCN (MSE).

(2) Quality: FCN (MSE+STOI) performs the best.

BiiASP (3) STOI and PESQ are not highly correlated.
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Deep Learning Based SE System

Feature

Noisy extraction

speech
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[Zhao et al., ICASSP 2018],

[Le Roux, et al. ICASSP 2019],
[Germain et al., Interspeech 2019],
[Kolbaek et al., TASLP 2020],

[Kim et al., Arxiv 2019],

[Valin et al., Interspeech 2020],
[Xia et al., ICASSP 2020],.......
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Assistive Voice Communication

* Assistive listening
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Cochlear Implant

Transmitter coil

Speech processor:
1. Microphone.
2. DSP chip.

3. Battery

4. Others...

Source from:
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/cochlear-implant-surgery

28
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Cochlear Implant

Sound processor Electrodes

Cochlear with

Transmitter implant electrodes

Receiver

Traveling wave theory (Nobel Prize 1961)

Source from:
https://www.healthdirect.gov.au/cochlear-implant

http://www.yanthia.com/online/projlets/spear3/index.html
Bir-ASP  https://medium.com/@mosaicofminds/maps-in-the-brain-f236998d544f


https://www.healthdirect.gov.au/cochlear-implant

SE for Cochlear Implant

* The tremendous progress of Cl technologies in the past three

decades has enabled many Cl users to enjoy high level of speech
understanding in quiet.

*  For most Cl users, however, the performance of speech
understanding in noise still remains challenging.

» F. Chen, Y. Hu, and M. Yuan, “Evaluation of Noise Reduction Methods for Sentence Recognition by
Mandarin-Speaking Cochlear Implant Listeners,” Ear and hearing, vol. 36, no. 1, pp. 61-71, 2015.

* Deep learning based speech enhancement (SE) for CI.

LigASP
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SE for Cochlear Implant
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SE for Cochlear Implant Simulation
* \ocoded speech
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SE for Cochlear Implant Simulation

« Normal speech
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NCM scores

Evaluation Results
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(2) DL-based SE outperforms traditional
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Input SNR

Vocoder results: 10 normal hearing subjects.
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Dysarthria, apraxia, aphasia, stuttering,
oral surgery, vocal damage
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SE for Speaking Disorder

* Task: improving the speech intelligibility of
surgical patients.

* Target: oral cancer (top five cancer for male in
Taiwan).

g

Before

After

) Liberty Times Ltd.. Taipei Veterans General Hospital
BirASP
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SE for Speaking Disorder

* Proposed: joint training of source and target dictionaries
with non-negative matrix factorization (NMF):
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Testing Results

Original:
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Dysarthric Voice Conversion

BT RKET— - EEH

» W.-C. Huang, K. Kobayashi, Y.-H. Peng, C.-F. Liu, Y. Tsao, H.-M. Wang, T. Toda, "A
Preliminary Study of a Two-Stage Paradigm for Preserving Speakerldentity in Dysarthric J= -
Voice Conversion," Interspeech 2021. — ge.r
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Electrolaryngeal Voice Conversion

Original MT-CLDNN Seq2seq ELVC

Sample1: # 37 T %5 2F L X T
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Summary

* Key Factors
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Artificial Intelligent Assistance (AlA)

Artificial Intelligence (Al)
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Bio-ASP Lab in CITI Academia Sinica
(c* Jixzﬂ =8 A ﬁi:}ifp szﬂ M)

Bio-ASP Lab

Biomedical Acoustic Signal Processing Lab

Contact: yu.tsao@citi.sinica.edu.tw
More Information: http://bio-
asplab.citi.sinica.edu.tw/
Publications:
https://www.citi.sinica.edu.tw/page
s/yu.tsao/publications_en.html



mailto:yu.tsao@citi.sinica.edu.tw
http://bio-asplab.citi.sinica.edu.tw/
https://www.citi.sinica.edu.tw/pages/yu.tsao/publications_en.html
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