How Deep Learning Helps in the Electron Identification
with AMS-02 Electromagnetic Calorimeter
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AMS (A TeV precision, multipurpose magnetic spectrometer)
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AMS Electromagnetic Calorimeter (ECAL)

Highest enegy cells
are in the core of
the shower.

Electromagnetic shower
One of 1296 cells (9x9 mm?)
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Electromagnetic (EM) Shower (e*)

Z-X Projection
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Two-class Prediction Problem

Consider Two-class prediction problem (binary Predicted condition
classification), in which the outcomes are labeled
either as positive (P) or negative (N). There are Total population
P (P) gative (N). The L Positive (PP) et Negative (PN) D
four possible outcomes from a binary classifier. =P+N
ei . False negative (FN),
= o True positive (TP),
| -f_—) Positive (P) e type Il error, miss,
\ k . :a Electromagnetic : underestimation
c
A shower image B showers
© + o
= p False positive (FP), .
© ) True negative (TN),
< Negative (N) type | error, false alarm,
correct rejection
Hadron Shower overestimation
Binary Classifier ) )
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-€ } )
(Model) (Predicted)
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A predicted value (x)
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Receiver Operating Characteristic (ROC) Curves

* ROC curves are a good way to illustrate the performance of given classifier
* Shows the negative rejection over the positive rate of the remaning sample
* Best classifier can be identified by the largest area under curve (AUC)
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Electron Identification by Machine Learning

o i Classifier
: 5 me=P> | 0ss function £ —E=——
Images (Binary Classifier)

Minimization Optimation:
Pick the “best” parameters of the classifier

|dentify electrons through

I Using Classifier
Shower images = predicted values from the classifier

with the “best” parameters



Binary Classifier: Boost Decision Tree (BDT)

Boost decision tree (BDT) is most popular machine learning method in
the high energy physics experiment.

An example of a decision is composed of nodes, edges, and the leaves.
The nodes are related to different features of the input, and the edges

suggests the feature assignments. The nodes at the last level of this
tree are called leaves, which give the answer to the classification. The Background(B) e Signal(s)

final classifier would be the weighted summary of these decision trees.
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Binary Classifier: Deep Neural Network (DNN)

Shower Images

y; = 1,ife®
Vi = 0, lfpi

Learn abstract features Learn high-level features by
and concepts from raw increasing non-linear relations
image pixels between features

m m
(Convolution NN) (Dense NN)

T

Loss function: Binary Cross Entropy
N
1
L=~ N Ly - ln(Pei,i) +A-y)- ln(Ppi,i)]

i=1

Binary cross entropy compares each of the predicted probabilities to
actual class output which can be either O or 1. It then calculates the

score that penalizes the probabilities based on the distance from the
expected value. That means how close or far from the actual value.
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Feature Learning (Convolution Neural Network)
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Classification (Dense Neural Network)

L y = XAT L
x is input channels

y is output channels
A is a weight matrix
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Classifier
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Optimization: Stochastic Gradient Descent (SGD)

0511 = 05 — (775 - g(Bs) +m-ng_q - 9(95—1))
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L;(6;): loss value of sample i atstep s
g(8;) : gradient at step s

0: model parameters at step s

Ns: learning rate at step s

m: momentum £(9)
N': batch size
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One Cyde Lea rning Rate PO||Cy Super-Convergenc.e: Very Fast Training of Neural Networks
Using Large Learning Rates (arXiv:1708.07120v3)

* Model parameters are initial to random numbers.

 The gradient is large in beginning iterations, which causes the gradient to be not smooth enough.
* The small learning rate is used in beginning iterations. gls) = g(65_1)
* The large learning rate is used to accelerate learning.

* The final small learning rate is used to converge the minimum loss.
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for large minibatches (e.g., 8k) the linear scaling rule


https://arxiv.org/abs/1708.07120

Receiver operating characteristic (ROC)
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