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Antiprotons, Positrons, ...
from Dark Matter Collisions

Interstellar
Medium
(ISM)
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Supernovae

Antiprotons, Positrons, …
from Collisions

Positrons, …
from Pulsars

On the Origins of Cosmic Antimatters
New Astrophysical Sources: 

Pulsars, …

AMS on the ISS

Four elementary particles (Protons Electrons Antiprotons Positrons)
are stable and could travel through the Galaxy.

They carry information of the origin and propagation history of cosmic rays.
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AMS (A TeV precision, multipurpose magnetic spectrometer)
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Transition Radiation Detector (TRD)
Identify 𝒑±/𝒆±

Silicon Tracker (Tracker) 
𝒁,𝑷

Electromagnetic Calorimeter (ECAL) 
𝑬 of 𝒆± and Identify 𝒑±/𝒆±

Ring Imaging Cherenkov (RICH)
𝒁, 𝜷

Time of Flight (TOF) 
𝒁, 𝜷

The charge (𝒁) and energy (𝑬) or rigidity 
(𝑹 ≡ 𝑷/𝒁) are measurement 

independently by several detectors

Magnet (∼0.14 Tesla) 
±𝒁

1m

Absolute Charge |𝑍|
Tracker & TOF

Energy of 𝑒±
ECAL

Charge-Sign
Rigidity 𝑅
Tracker with Magnet

Velocity 𝛽 = ⁄𝑣 𝑐
TOF & RICH

𝑝±/𝑒± identification
TRD & ECAL

Volume: 5m x 4m x 3m
Weight: 7.5 tons
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AMS Electromagnetic Calorimeter (ECAL) 

Electromagnetic shower
Highest enegy cells 
are in the core of 
the shower.

1296 cells = 72 cells/layer x 18 layers

Y Y X X Y Y X X Y Y X X Y Y X X Y Y
Direction Projection of Layers (10 in Z-Y, 8 in Z-X)
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Electromagnetic (EM) Shower (𝑒±)

Hadron Shower (𝑝±)
X-Y Projection Z-X Projection

X-Y Projection Z-X Projection

Bremsstrahlung

Pair production
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Two-class Prediction Problem

Binary Classifier

(Model)

A shower image

A predicted value (x)
(Is it like an electron or EM shower?)

Electromagnetic 
Showers

Hadron Shower

Consider Two-class prediction problem (binary
classification), in which the outcomes are labeled
either as positive (P) or negative (N). There are
four possible outcomes from a binary classifier.

(Predicted)

e± p±

e±

p±

e±p±
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Receiver Operating Characteristic (ROC) Curves
• ROC curves are a good way to illustrate the performance of given classifier
• Shows the negative rejection over the positive rate of the remaning sample
• Best classifier can be identified by the largest area under curve (AUC)
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Electron Identification by Machine Learning

ClassifierTraining 
images

Shower images

Loss function ℒ

Minimization Optimation:
Pick the “best” parameters of the classifier

Using Classifier 
with the “best” parameters

Identify electrons through 
predicted values from the classifier

(Binary Classifier)
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Binary Classifier: Boost Decision Tree (BDT)
Boost decision tree (BDT) is most popular machine learning method in
the high energy physics experiment.

An example of a decision is composed of nodes, edges, and the leaves.
The nodes are related to different features of the input, and the edges
suggests the feature assignments. The nodes at the last level of this
tree are called leaves, which give the answer to the classification. The
final classifier would be the weighted summary of these decision trees.

Background(B) Signal(S)

edge



10

Binary Classifier: Deep Neural Network (DNN)

Shower Images

Feature Learning
(Convolution NN)

Classification
(Dense NN)
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𝑦" 3 ln 𝑝&±," + 1 − 𝑦" 3 ln 𝑝(±,"

Loss function: Binary Cross Entropy

𝑦" = 1, if e±
𝑦" = 0, if p±

Binary cross entropy compares each of the predicted probabilities to 
actual class output which can be either 0 or 1. It then calculates the 
score that penalizes the probabilities based on the distance from the 
expected value. That means how close or far from the actual value.

Learn high-level features by 
increasing non-linear relations 
between features

𝑝&±," + 𝑝(±," = 1

Learn abstract features 
and concepts from raw 
image pixels
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Feature Learning (Convolution Neural Network)
Shower
Image

Normalization Activation FunctionConvolution
Pooling

Full-connected
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Normalize values 
per each channel 
and image

1 0 1

0 1 0

1 0 1

Convolution Filter (3 X 3)
Channels = # of filters

Max Pooling (2 X 2)
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Classification (Dense Neural Network)

𝑝)," =
𝑒*",$
∑) 𝑒

*",$

SoftmaxNormalization
Activation
Function

Batch Norm
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𝑝&±," + 𝑝(±," = 1

𝑦 = 𝑥𝐴+
𝑥 is input channels
𝑦 is output channels
𝐴 is a weight matrix
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Z-X Projection
(Channels=1,
Z=8, X=72)

Z-Y Projection
(Channels=1,
Z=10, Y=72)

Z-X Projection
(C=8, Z=1, X=4)

Z-Y Projection
(C=8, Z=2, Y=4)

(Z=2, XY=3)

(Z=1, XY=3)

(Z=1, XY=3)

(Z=2, XY=3)

(Z=1, XY=3)

(Z=1, XY=3)
(Z=2, XY=3)

(Z=1, XY=3)

(Z=1, XY=3)
MaxPool 
(Z=1, XY=2)

MaxPool 
(Z=1, XY=2)

MaxPool 
(Z=1, XY=2)

MaxPool 
(Z=1, XY=2)

Average Pool 
(Z=1, X=4)

Average Pool 
(Z=2, Y=4)

Z Projection
(Channels=1, 
Z=18)

Channels=4, (Z=1)

(Z=3)

MaxPool 
(Z=2)

(Z=3)

(Z=3)
MaxPool 
(Z=2) Average Pool 

(Z=4)

Softmax

Chaneels=8 for Z-X

Channels=8 for Z-Y

Channels=4 for Z

C=8
C=2

C=20
C=20

(8+8+4)

Channels=2

Feature Learning (Convolution NN)

Classification (Dense NN)

(C=4, Z=4)
o 𝑒±
o 𝑝±

Channels (C)
Layers (Z)
Cells (XY)

Filter (Z=2, XY=5) 

Stride=(2 X 1)

Filter (Z=1, XY=3)
Channels=8, (Z=1, XY=1)

Filter (Z=1, XY=3)

Classifier

Z-(YY XX YY XX YY XX YY XX YY)

72 cells/layer x 18 layers

(C=8, Z=4, X=32)
(C=8, Z=5, Y=32) (C=8, Z=3, X=16)

(C=8, Z=4, Y=16) (C=8, Z=2, X=8)
(C=8, Z=3, Y=8)

(C=4, Z=8)
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Optimization: Stochastic Gradient Descent (SGD)

𝜃JKL = 𝜃J − 𝜂J & 𝑔 𝜃J +𝑚 & 𝜂JML & 𝑔 𝜃JML

ℒN 𝜃J : loss value of sample 𝑖 at step 𝑠
𝑔 𝜃J : gradient at step 𝑠
𝜃J: model parameters at step 𝑠
𝜂J: learning rate at step 𝑠
𝑚: momentum
𝑁: batch size

𝑔 𝜃J =
1
𝑁
.
NOL

P

∇ℒN 𝜃J

ℒ 𝜃 ℒ 𝜃 ℒ 𝜃



• Model parameters are initial to random numbers.
• The gradient is large in beginning iterations, which causes the gradient to be not smooth enough.
• The small learning rate is used in beginning iterations.
• The large learning rate is used to accelerate learning.
• The final small learning rate is used to converge the minimum loss. 
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Super-Convergence: Very Fast Training of Neural Networks 
Using Large Learning Rates (arXiv:1708.07120v3)

One Cycle Learning Rate Policy

cool-downwarn-up

annihilation phase

𝑔 𝜃, ≈ 𝑔 𝜃,-$

for large minibatches (e.g., 8k) the linear scaling rule 
breaks down when the network is changing rapidly, which 

Train images
Test images

https://arxiv.org/abs/1708.07120
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Results and Conclusion

40% 95%
1%

Deep Neural Network (DNN)

𝑝&±

• DNN shows 95% signal efficiency at 1% background
remaining, and it is better than 40% from BDT.

• Deep Learning is useful in the electron identification
with AMS-02 electromagnetic calorimeter.


