TIDC EIC Workshop August 18-19, 2022

Department of Physics, NCKU, Tainan, Taiwan

Mini-review of PDFs and TMDs (experimental aspect)

Wen-Chen Chang Institute of Physics, Academia Sinica

Mass/Spin Decomposition of Proton (Lattice QCD)

Can the origin of nucleon mass and spin be understood by its partonic structure?

Multi-dimensional Partonic Structures

Experimental Approach

Hadron-hadron

Unpolarized PDF Analysis Eur. Phys. J. C (2009) 63:189

Process	Subprocess	Partons	x range
$\ell^{\pm}\{p,n\} \to \ell^{\pm}X$	$\gamma^* q \to q$	q, ar q, g	$x \gtrsim 0.01$
$\ell^{\pm}n/p \to \ell^{\pm}X$	$\gamma^* d/u \to d/u$	d/u	$x \gtrsim 0.01$
$pp \rightarrow \mu^+ \mu^- X$	$u\bar{u}, d\bar{d} \rightarrow \gamma^*$	\bar{q}	$0.015 \lesssim x \lesssim 0.35$
$pn/pp \rightarrow \mu^+\mu^- X$	$(u\bar{d})/(u\bar{u}) \to \gamma^*$	\bar{d}/\bar{u}	$0.015 \lesssim x \lesssim 0.35$
$\nu(\bar{\nu})N \to \mu^-(\mu^+)X$	$W^*q ightarrow q'$	q, ar q	$0.01 \lesssim x \lesssim 0.5$
$\nu N \to \mu^- \mu^+ X$	$W^*s \to c$	S	$0.01 \lesssim x \lesssim 0.2$
$\bar{\nu}N \rightarrow \mu^+\mu^- X$	$W^*\bar{s} \to \bar{c}$	\overline{s}	$0.01 \lesssim x \lesssim 0.2$
$e^{\pm}p \rightarrow e^{\pm}X$	$\gamma^* q \to q$	g,q,ar q	$0.0001 \lesssim x \lesssim 0.1$
$e^+ p \rightarrow \bar{\nu} X$	$W^+\{d,s\} \to \{u,c\}$	d, s	$x \gtrsim 0.01$
$e^{\pm}p \rightarrow e^{\pm}c\bar{c}X$	$\gamma^* c \to c, \gamma^* g \to c \bar{c}$	<i>c</i> , <i>g</i>	$0.0001 \lesssim x \lesssim 0.01$
$e^{\pm}p \rightarrow \text{jet} + X$	$\gamma^* g \to q \bar{q}$	8	$0.01 \lesssim x \lesssim 0.1$
$p \bar{p} \rightarrow \text{jet} + X$	$gg, qg, qq \rightarrow 2j$	g, q	$0.01 \lesssim x \lesssim 0.5$
$p\bar{p} \to (W^\pm \to \ell^\pm \nu) X$	$ud \to W, \bar{u}\bar{d} \to W$	u, d, \bar{u}, \bar{d}	$x \gtrsim 0.05$
$p \bar{p} \to (Z \to \ell^+ \ell^-) X$	$uu, dd \rightarrow Z$	d	$x \gtrsim 0.05$

DIS, Drell-Yan, Jets

Hadronic Process	Partonic Process	Probed Partons	U	Р	Ν
Fixed Target DIS					
$\ell^{\pm}\{p,n\} \to \ell^{\pm} + X$	$\gamma^* q \to q$	q^+, q, \bar{q}, g	\checkmark	\checkmark	\checkmark
$\ell^{\pm}\{n,A\}/p \to \ell^{\pm} + X$	$\gamma^* d/u o d/u$	d/u	\checkmark		\checkmark
$\nu(\bar{\nu})A \to \mu^-(\mu^+) + X$	$W^*q ightarrow q'$	$\mathbf{q}, \mathbf{ar{q}}$	\checkmark		\checkmark
$\nu A \to \mu^- \mu^+ + X$	$W^*s \to c$	s	\checkmark		\checkmark
$\bar{\nu}A \rightarrow \mu^+\mu^- + X$	$W^* \bar{s} \to \bar{c}$	ŝ	\checkmark		\checkmark
Collider DIS					
$e^{\pm}p \rightarrow e^{\pm} + X$	$\gamma^*q o q$	${ m g,q,ar q}$	\checkmark		
$e^+p \to \bar{\nu} + X$	$W^+\{d,s\} o \{u,c\}$	d, s	\checkmark		
$e^{\pm}p \rightarrow e^{\pm}c\bar{c} + X$	$\gamma^* c \to c, \gamma^* g \to c \bar{c}$	c, g	\checkmark		
$e^{\pm}p \rightarrow (di-)jet(s) + X$	$\gamma^*g o q \bar{q}$	g	\checkmark		
Fixed Target SIDIS					
$\ell^{\pm}\{p,d\} \rightarrow \ell^{\pm} + h + X$	$\gamma^*q o q$	${ m u}, {ar u}, { m d}, {ar d}, { m g}$	\checkmark	\checkmark	
$\ell^{\pm}\{p,d\} \to \ell^{\pm}c\bar{c} \to \ell^{\pm}D + X$	$\gamma^*g \to c\bar{c}$	g		\checkmark	
Fixed Target DY					
$pp \to \mu^+ \mu^- + X$	$u \bar{u}, d \bar{d} ightarrow \gamma^*$	$\bar{\mathbf{q}}$	\checkmark		
$p\{n,A\}/pp \to \mu^+\mu^- + X$	$(u\bar{d})/(u\bar{u})\to\gamma^*$	$\bar{\mathrm{d}}/\bar{\mathrm{u}}$	\checkmark		\checkmark
Collider DY					
$p\bar{p} \to (W^{\pm} \to \ell^{\pm}\nu) + X$	$ud \to W^+, \bar{u}\bar{d} \to W^-$	$\mathrm{u},\mathrm{d},\mathrm{ar{u}},\mathrm{ar{d}}$	\checkmark		
$p\{p,A\} \to (W^{\pm} \to \ell^{\pm}\nu) + X$	$u\bar{d} \rightarrow W^+, d\bar{u} \rightarrow W^-$	${ m u, d, ar{u}, ar{d}}$	\checkmark	\checkmark	\checkmark
$p\bar{p}(p\{p,A\}) \to (Z \to \ell^+ \ell^-) + X$	$uu, dd(u\bar{u}, d\bar{d}) \rightarrow Z$	$\mathbf{u}, \mathbf{d}, \mathbf{g}$	\checkmark	\checkmark	\checkmark
$pp \to (W+c) + X$	$gs \to W^-c, g\bar{s} \to W^+\bar{c}$	$\mathbf{s}, \mathbf{\bar{s}}, \mathbf{g}$	\checkmark		
$pp \to (\gamma^* \to \ell^+ \ell^-) X$	$u\bar{u}, d\bar{d} \rightarrow \gamma^*, u\gamma, d\gamma \rightarrow \gamma^*$	$ar{\mathrm{q}},\mathrm{g},\gamma$	\checkmark		
Jet and hadron production					
$p\bar{p}(p\{p,A\}) \rightarrow (di-)jet(s) + X$	$gg, qg, qq \rightarrow \text{jet}(s)$	g,q	\checkmark	\checkmark	\checkmark
$p\bar{p}(pp) \rightarrow h + X$	$gg,qg,qq \to \pi,K,D$	g,q	\checkmark	\checkmark	
Top Production	ľ	nttps://arxiv.o	rg/a	ibs/	200
$pp \rightarrow t\bar{t} + X$	$gg ightarrow t ar{t}$	g	\checkmark		
$pp \rightarrow t + X$	$W^*q ightarrow q'$	$\mathbf{q}, \mathbf{ar{q}}$	\checkmark		

Unpolarized and Polarized PDFs

Much larger uncertainties!

Polarized Sea

https://arxiv.org/abs/2001.07722

Gluons

Light Sea Asymmetry

Polarized Gluons and Quarks

Double longitudinal spin asymmetries A_{LL}

Not sensitive to the sign of $\Delta g!$

Much larger uncertainties, in comparison with the unpolarized PDFs! JAM: https://arxiv.org/abs/2201.02075 $\Delta q^+ = \Delta q + \Delta \bar{q}.$ 0.4 SU(2) --- $SU(2) + A_{LL} pos$ SU(3) 0.00 0.3 SU(3) + pos-0.050.2 -0.100.1-0.15 $x\Delta u^+$ $x\Delta d^+$ 0.0 -0.20 $x\Delta s^+$ 0.20.10.00.0-0.1-0.2-0.2 $Q^2 = 10 \text{ GeV}^2$ $x\Delta q$ -0.30.50.010.10.010.10.5 \boldsymbol{x} x

Uncertainties of EIC for DIS

EIC Yellow report: https://arxiv.org/abs/2103.05419

Unpolarized PDFs

"Note that the ratios are not bound to be less than one since the inclusion of new data can change the relative strength of the flavor channels on the differential cross sections."

Improved valence quarks and gluon at small x.

EIC Yellow report: https://arxiv.org/abs/2103.05419

SIDIS: Unpolarized Sea

Improved sea quarks with SIDIS.

EIC Yellow report: https://arxiv.org/abs/2103.05419

Polarized Gluon and Quark

SIDIS: Polarized Sea

Significantly improved uncertainties of sea quarks helicities

EIC Yellow report: https://arxiv.org/abs/2103.05419

Room for Orbital Angular Momentum (OAM)

Multi-dimensional Partonic Structures

State-of-Art pQCD Calculations PRL, 128, 252001 (2022)

Unpolarized Quark Transverse Momentum distributions $f_1^q(x, k_T^2)$

Parameterizations of TMDs

$$\begin{split} f_{1\mathrm{NP}}^{a}(x, \mathbf{k}_{\perp}^{2}) &= \frac{1}{\pi} \ \frac{\left(1 + \lambda \mathbf{k}_{\perp}^{2}\right)}{g_{1a} + \lambda \ g_{1a}^{2}} \ e^{-\frac{\mathbf{k}_{\perp}^{2}}{g_{1a}}} , & \text{a: parton flavor} \end{split}$$

$$\begin{aligned} \mathsf{FF}_{D_{1\mathrm{NP}}^{a \to h}(z, \mathbf{P}_{\perp}^{2}) &= \frac{1}{\pi} \ \frac{1}{g_{3a \to h} + \left(\lambda_{F}/z^{2}\right)g_{4a \to h}^{2}} \left(e^{-\frac{\mathbf{P}_{\perp}^{2}}{g_{3a \to h}} + \lambda_{F}} \frac{\mathbf{P}_{\perp}^{2}}{z^{2}} \ e^{-\frac{\mathbf{P}_{\perp}^{2}}{g_{4a \to h}}}\right) \\ g_{1}(x) &= N_{1} \ \frac{\left(1 - x\right)^{\alpha} \ x^{\sigma}}{\left(1 - \hat{x}\right)^{\alpha} \ \hat{x}^{\sigma}} \qquad g_{3,4}(z) = N_{3,4} \ \frac{\left(z^{\beta} + \delta\right) \ \left(1 - z\right)^{\gamma}}{\left(\hat{z}^{\beta} + \delta\right) \ \left(1 - \hat{z}\right)^{\gamma}} \\ & \left\langle \mathbf{k}_{\perp}^{2} \right\rangle(x) = \frac{g_{1}(x) + 2\lambda g_{1}^{2}(x)}{1 + \lambda g_{1}(x)} \qquad \left\langle \mathbf{P}_{\perp}^{2} \right\rangle(z) = \frac{g_{3}^{2}(z) + 2\lambda_{F}g_{4}^{3}(z)}{g_{3}(z) + \lambda_{F}g_{4}^{2}(z)} \end{aligned}$$

Bacchetta et al., https://arxiv.org/abs/1703.10157

22

SIDIS

HERMES: PRD 87, 074029 (2013) [arXiv:1212.5407]

Fixed-Target Drell-Yan

24

Collider Z Production

Bacchetta et al., https://arxiv.org/abs/1703.10157

Global Analysis of $f_1^q(x, k_T^2)$

Global Analysis of $f_1^q(x, k_T^2)$

Drell-Yan ONLY

https://arxiv.org/abs/1912.07550

Leading-Twist Transverse-momentum Dependent **Parton Density Function** (TMDs)

Transverse Single Spin Asymmetry

https://arxiv.org/abs/1510.06783

Accessing TMDs

SIDIS: ep \rightarrow ehX

$$\sigma^{ep \to ehX} = \sum_{q} DF \otimes \sigma^{eq \to eq} \otimes FF$$

Drell-Yan: $pp \rightarrow e^+e^-X$

e'(E')

Dihadron in e+e-: $e^+e^- \rightarrow h_1 h_2 X$

 $\sigma^{ee \to hhX} = \sum \sigma^{qq \to ee} \otimes FF \otimes FF$

Hadron production in pp: pp \rightarrow hX

$$\sigma^{pp \to hX} = \sum_{q} DF \otimes DF \otimes \sigma^{qq \to qq} \otimes FF$$

Collins Azimuthal Asymmetry off Polarized Protons

PLB 693, 11 (2010) [arXiv:1006.4221] 31

Belle: Two-pion Azimuthal Correlation

Extraction of Transversity and Collins FFs from SIDIS, Belle and Barbar data

Transversity

Collins FFs

Anselmino et al., PRD 92, 114023 (2015) [arXiv:1510.05389] Signals of transversity and Collins FFs s in SIDIS and ee processes. Flavor dependence.

33

Nucleon Tensor Charge from Extracted Transversity

Tensor charges:

- 1 : Extractions from global fits (using two different Collins FF parameterizations)
- 2-10: Predictions from various models (including LQCD)
- Discrepancy could be caused by neglecting sea quark transversity in the fit
- Tensor charges are smaller than axial charge.

 A nonzero Sivers function is considered to be strong evidence for the presence of quark orbital angular momentum. 35

Nonzero Sivers Asymmetries from SIDIS

COMPASS, PLB 744 (2015) 250

Signals of Sivers functions in SIDIS. Flavor dependence.

х PRD 86, 014028 (2012) 36 [arXiv:1204.1239]

10⁻¹

10⁻²

u quark

-0.5

0.5

ky(GeV)

-0.5

d quark

-0.5

0.5

k_x(GeV)

0.5

ky(GeV)

-0.5

J

0.5

k_x(GeV)

Sivers Asymmetry in Drell-Yan:

COMPASS, PRL 119 (2017) 112002

Unpolarized TMDs at EIC (SIDIS)

Unpolarized TMD of *u*

Significantly Improved uncertainties of unpolarized TMDs at small x

EIC Yellow report: https://arxiv.org/abs/2103.05419

Polarized TMDs at EIC (SIDIS)

What EIC could help PDFs & TMDs MOST?

- Unpolarized Nuclear PDFs (DIS)
 Sea quark and gluon at small x
- Polarized Nucleon PDFs (SIDIS)
 Quark, sea quark and gluon at small x
- TMDs (SIDIS)
 - Transversity and Sivers
- Pion and Kaon PDFs (tagged-DIS)
- Trace anomaly (threshold Jpsi and Upsilon photoproduction)

Review Articles

- Unpolarized PDFs:
 - https://arxiv.org/abs/1709.04922
 - https://arxiv.org/abs/1905.06957
 - <u>https://arxiv.org/abs/2001.07722</u>
- Polarized PDFs:
 - <u>https://arxiv.org/abs/1209.2803</u>
 - <u>https://arxiv.org/abs/1807.05250</u>
- TMDs:
 - <u>https://arxiv.org/abs/1507.05267</u>
 - https://arxiv.org/abs/1510.06783
 - https://arxiv.org/abs/1607.02521
 - https://arxiv.org/abs/2001.05415
- GPDs:
 - <u>https://arxiv.org/abs/hep-ph/0106012</u>
 - <u>https://arxiv.org/abs/hep-ph/0307382</u>
 - https://arxiv.org/abs/1303.6600
 - <u>https://arxiv.org/abs/1602.02763</u>