Prospects of GPD Measurements at EIC

TIDC Workshop at NCKU August 18, 2022

> Po-Ju Lin Acadeima Sinca

Outline & Confession

1.Review2.Outlook

In this presentation, I blatantly took a lot of materials from:

- EIC white paper
- EIC yellow report
- Great talks presented by Andrey Kim, Dariah Sokhan, Stepan Stepanyan, Nicole d'Hose and many others

Trodded paths & where we are

Generalized Parton Distributions (GPDs)

GPDs embody both PDFs and FFs

Provides information on the interesting properties of the nucleon.

- > Mapping the transverse plane distribution of parton
- Pressure distribution inside nucleon
- Angular momentum of parton

Ε

Exclusive Process

- Use exclusive processes, where all final state particles are "detected", to access the muliti-variable dependence of GPDs, and constrain the GPD parameterization with measurements in various phase space.
 Processes:
 - Deeply Virtual Compton Scattering (DVCS)
 - Deeply Virtual Meson Production (DVMP)
 - Time-like Compton Scattering (TCS)
 - Double DVCS (DDVCS)

Deeply Virtual Compton Scattering

> DVCS is regarded as the golden channel and gives access to four chiral-even GPDs $H, \tilde{H}, E, \tilde{E}(x, \xi, t)$. Its interference with the well-understood Bethe-Heitler process gives access to more info.

Compton Form Factors (CFFs)

$$\mathcal{Re}\mathcal{H}(\xi,t) = \mathcal{P}\int dx \, \frac{Im\,\mathcal{H}(x,t)}{x-\xi} + \Delta(t)$$

Transverse Imaging and Pressure Distribution

M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

Polarized Beam & Unpolarized Target

Experimental access by cross-sections and spin asymmetries

Sensitivity to CFFs

 \succ The target polarization can be explored as well.

Sensitivity to CFFs

 \succ The target polarization can be explored as well.

Neutron target: flavor decomposition & access to E

The Past and Present Experiments

e-p Collider forward fast proton

HERA: H1 and ZEUS
 Polarised 27 GeV e-/e+
 Unpolarized 920 GeV proton
 ~Full event reconstruction

Fixed target mode slow recoil proton

HERMES: Polarised 27 GeV e-/e+
 Long., Trans. polarised p, d target
 Missing mass technique, 2006-09 with recoil detector

 Jlab: Hall A, C, CLAS High Luminosity Polar. 6 & 12 GeV e-Long., (Trans.) polarised p, d target
 Missing mass technique (A,C) and complete detection (CLAS)

> COMPASS @ CERN: Polarised 160 GeV μ +/ μ p target, (Trans.) polarised *target with recoil p detection*

Landscape – Global Programs of DVCS

Χ

13

Starting with lower energy – intermediate to high *x*

A complete set of DVCS asymmetries at Hermes

HERMES provided a complete set of observables

2001: 1st DVCS publication as CLAS & H1 2007: end of data taking 2012: still important publications JHEP 07 (2012) 032 A_C A_{LU} JHEP10(2012) 042 A_{LU} with recoil detection (2006-7)

- Electron & positron beams on proton
- ➢ Beam energy of 27.6 GeV
- \blacktriangleright Luminosity $\leq 10^{31} cm^{-2} s^{-1}$
- Most data within: $0.05 \le x_B \le 0.2$
 - $0.03 \le x_B \le 0.2$ $2 \ GeV^2 \le Q^2 \le 6 \ GeV^2$

Beam Spin Sum and Diff of DVCS at JLab Hall A

- ➤ After the pioneering E00-110 in 2004 at Hall-A, the E07-007 experiment in 2010
- > High precision cross-section measurement in a small kinematic region: Generalized Rosenbluth separation of the DVCS² (scales as E_e^2) and the BH-DVCS interference (scales as E_e^3) terms. NLO and/or higher-twist improve model agreement

Defurne et al., Nature Communications 8 (2017) 1408

 $x + \xi$

р

GPDs

Twist-2, NLO^{p'}

Beam Spin Sum and Diff of DVCS at JLab Hall A

≻ After the pioneering E00-110 in 2004 at Hall-A, the E07-007 experiment in 2010

kinematic region: Generalized Rosenbluth separation of the DVCS² s as E_e^3) terms. NLO and/or higher-twist improve model agreement

 $\stackrel{\boldsymbol{\leftarrow}}{\stackrel{\boldsymbol{\leftarrow}}{\stackrel{\boldsymbol{}}}} p \rightarrow e \gamma p$

E_e: 4.5 & 5.6 GeV
 Q²: 1.5, 1.9, 2.3 GeV² at fixed x_B : 0.36

- Two scenarios: higher-twist or next-to-leading order
- Significant differences between pure DVCS and interference contributions.
- Sensitivity to gluons.
- Separation of HT and NLO effects requires scans across wider ranges of Q^2 and beam energy \rightarrow JLab 12
- First experimental extraction of all four helicity-conserving CFFs
 F. Georges et al. (JLab Hall A Collaboration), Phys. Rev. Lett. 128, 252002 (June 2022)

Nucleon Tomography in the Valence Domain with CLAS Data

Fit of 8 CFFs at L.O. and L.T. (ImH, ReH, ImE, ReE, Im \tilde{H} , Re \tilde{H} , Im \tilde{E} , Re \tilde{E}) VGG model Fit $Im\mathcal{H} = A e^{-B|t|}$ $\langle Q^2 \rangle = 1.52 (GeV/c)^2$ $\langle Q^2 \rangle = 1.97 (GeV/c)^2$ $< x_{B} > = 0.255$ $< x_{\rm B} > = 0.179$ Better Constrained Q²=2.23 GeV² $Q^2 = 1.11 \text{ GeV}^2$ Q²=1.63 GeV² x_B=0.126 x_e=0.185 x_B=0.335 A₁=1.44±1.25 A₁=5.30±0.95 A,=4.98±0.56 Wide kinematic coverage b₁=4.25±0.98 b₁=3.03±0.55 b,=1.04±3.68 Carried out measurements with logitudinally polarized target as well $\langle Q^2 \rangle = 2.41 (GeV/c)^2$ $\langle Q^2 \rangle = 2.6 (GeV/c)^2$ $< x_{\rm B} > = 0.255$ $< x_{\rm B} > = 0.345$ $\stackrel{\leq}{\stackrel{}{\stackrel{}{\stackrel{}{\stackrel{}}{\stackrel{}}{\stackrel{}}}}} p \rightarrow e \gamma p$ ²" ۲ ĩΞ Valence quarks at centre Sea quarks spread out \succ towards the periphery. 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 -t (GeV²) -t (GeV²) -t (GeV²) H.-S. Jo et al. (CLAS) PRL115, 212003 (2015) 212003 $\overrightarrow{e} \overrightarrow{p} \rightarrow e \gamma p$ N. Hirlinger Saylor et al (CLAS) PRC 98 (2018) 045203 $\langle Q^2 \rangle = 3.31 (GeV/c)^2$ $< x_{\rm B} > = 0.453$ Simultaneous fit to BSA, TSA & DSA \rightarrow Information on relative distribution electromagnetic charge distribution of quark momenta (PDFs) and quark helicity, $\Delta q(x)$

$$\begin{aligned} H(x,0,0) &= q(x) & \tilde{H}(x,0,0) &= \Delta q(x) \\ \int_{-1}^{+1} H dx &= F_1 & \int_{-1}^{+1} \tilde{H} dx &= G_A \end{aligned}$$

> Indication that axial charge is more concentrated than electromgnatic charge

Pisano et al. PRD91, 052014 (2015) Seder et al. PRL114, 032001 (2015) 18

axial charge distribution

0.4

-t (GeV2)

Nucleon Tomography in the Gluon Domain at HERA

Nucleon Tomography of COMPASS Preliminary Result

 \succ The transverse-size evolution as a function of $x_B \rightarrow$ Expect at least 3 x_B bins from full 2016-17 data

GPDs and Pressure Distribution

- Repulsive pressure near center
 p(r=0) = 10³⁵ Pa
- **Confining** pressure at r > 0.6 fm

With all the data from beam spin sum and difference of CLAS at 6 GeV

$$\int xH(x,\xi,t)dx = M_2(t) + \frac{4}{5}\xi^2 d_1(t)$$

$$d_1(t) \propto \int rac{j_0(r\sqrt{-t})}{2t} p(r) \mathrm{d}^3 r$$

 $M_2(t)$: Mass/energy distribution inside the nucleon $d_1(t)$: Forces and pressure distribution

Bessel Integral relates $d_1(t)$ to the radial pressure p(r).

Atmospheric pressure: 10^5 Pa Pressure in the center of neutron stars $\leq 10^{34}$ Pa

 $\stackrel{{}_{\scriptstyle\leftarrow}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}{\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel{{}_{\scriptstyle\leftarrow}}\\\stackrel$

GPDs and Nucleon Spin

 $\ell d \rightarrow \ell n \gamma$ (p)

 $\Delta \sigma_{\rm LU}^{\rm sin\phi} = Im \left(F_{1n} \mathcal{H} + \xi (F_{1n} + F_{2n}) \widetilde{\mathcal{H}} + t/4m^2 F_{2n} \mathcal{E} \right)$

$\vec{\ell} \not p \rightarrow \ell \not p \gamma$

 $\Delta \sigma_{\rm UT}^{\sin(\phi-\phi s)\cos\phi} = -t/4m^2 \operatorname{Im}(F_{2p} \mathcal{H} - F_{1p}\mathcal{E})$ $\Delta \sigma_{\rm LT}^{\sin(\phi-\phi s)\cos\phi} = -t/4m^2 \operatorname{Re}(F_{2p} \mathcal{H} - F_{1p}\mathcal{E})$

- First experimental constraint on E^q from neutron DVCS beam spin asymmetry at Hall A. M. Mazouz *et al*, PRL 99 (2007) 242501
- Provides constraints on orbital angular momentum of quarks

$$J_{q} = \frac{1}{2}\Sigma_{q} + L_{q} = \frac{1}{2}\int_{-1}^{1} dx \, x[H^{q}(x,\xi,0) + E^{q}(x,\xi,0)]$$

Model dependent extraction of J^u and J^d

GPDs and Nucleon Spin

 $\ell d \rightarrow \ell n \gamma (p)$

 $E = 4.45 \, GeV$

-0.35

-0.40

-0.30

t (GeV²)

600

500

400

300

200

100

(pb GeV⁻⁴)

dx_B dQ² dt

 $d^3 \sigma$

- $d^3\sigma_n$ (exp.) - $d^3\sigma_d$ (exp.)

 $E = 5.55 \, GeV$

-- BH_

— Cano–Pire

-0.25

-0.20

-0.15

-0.1

-0.2

-0.30

t (GeV²)

-- BH,

– VGG

-0.40

-0.35

 Recent input from Result of neutron-DVCS at Hall A E08-025 (done on 2010)

-0.25

-0.20

-0.15

with $E_e = 4.5 \& 5.5 \text{ GeV}$ on LD_2 target. <
 $Q^2 > = 1.75 \text{ GeV}^2$, < $x_B > = 0.36$

M. Benali et al., Nature Phys. 16(2), 191 (2020)

DVMP

Deeply Virtual Meson Production (DVMP)

4 chiral-even GPDs: helicity of parton unchanged

$$\mathbf{H}^q(x, \xi, t)$$
 $\mathbf{E}^q(x, \xi, t)$ $\widetilde{\mathbf{H}}^q(x, \xi, t)$ $\widetilde{\mathbf{E}}^q(x, \xi, t)$

+ 4 chiral-odd or transversity GPDs: helicity of parton changed

H ^q _T (<i>x</i> , ξ, t)	$\mathbf{E}_{\mathbf{T}}^{q}(x,\xi,t)$	$\overline{\mathbf{F}_{q}}$ - 2 $\widetilde{\mathbf{H}}_{q}$ + \mathbf{F}_{q}
$\widetilde{H}_{T}^{q}(x, \xi, t)$	$\widetilde{\mathbf{E}}_{\mathbf{T}}^{q}(x,\xi,t)$	

- > Universality of GPDs, quark flavor filter
- > Ability to probe the chiral-odd GPDs.
- In addition to nuclear structure, provide insights into reaction mechanism

What Can We Learn from Chiral-GPDs

- $\succ \overline{E}_T$ is related to the distortion of the polarized quark distribution in the transverse plane for an unpolarized nucleon
- \succ Chiral-odd GPDs H_T
 - Generalization of transversity distribution h₁(x)
 → related to the transverse spin structure
 - Tensor charge

GPDs parametrization: H_T tensor charge: T.Ledwig, A.Silva, H.C. Kim $\int dx H_T(x, \xi, t)$ transversity PDF: M.Anselmino $H_T(x, \xi = 0, t = 0) = h_1$

DVMP Structure Functions with Longitudinally Polarized Beam & Target

$$\frac{2\pi}{\Gamma} \frac{d^4\sigma}{dQ^2 dx_B dt d\phi} = \sigma_T + \epsilon \sigma_L + \epsilon \sigma_{TT} \cos 2\phi + \sqrt{\epsilon(1+\epsilon)} \sigma_{LT} \cos \phi \quad \Rightarrow \text{Unpolarized} \\ + P_b \sqrt{\epsilon(1-\epsilon)} \sigma_{LT'} \sin \phi \quad \Rightarrow \text{Longitudinally polarized beam} \\ + P_{tg} \left(\sqrt{\epsilon(1+\epsilon)} \sigma_{UL}^{\sin \phi} \sin \phi + \epsilon \sigma_{UL}^{\sin 2\phi} \sin 2\phi \right) \Rightarrow \text{Longitudinally polarized target} \\ + P_b P_{tg} \left(\sqrt{1-\epsilon^2} \sigma_{LL} + \sqrt{\epsilon(1-\epsilon)} \sigma_{LL}^{\cos \phi} \cos \phi \right) \Rightarrow \text{Longitudinally polarized beam} \\ \text{and target}$$

 ϵ : degree of longitudinal polarization P_b : initial lepton polarization P_{tg} : initial target polarization

Fig: M.G. Alexeev et al. Phys.Lett.B 805 (2020)

Vector Meson Production at CLAS

- Pilot analysis of exclusive ω-electroproduction published in EPJ A 24, 445 (2005), followed by analyses of φ, Phys. Rev. C 78, 025210 (2008), and ρ⁰, EPJ A 39, 5-31 (2009)
- ➤ Test two hypotheses → t-channel Regge trajectory exchange on the hadronic level and the handbag diagram approach on the partonic level
- ➢ Regge Model favored by data in CLAS kinematics.

GPDs with Vector Meson Production

GK Model by Goloskokov, Kroll, constrained by DVMP at small x_B (or large W)

- leading-twist longitudinal $\gamma_l^* p \rightarrow M p$ and transv. polar. $\gamma_T^* p \rightarrow M p$
- quark and gluon contributions (GPDs H, E, H_T) and beyond leading twist

Exclusive π^0 Production

$$\ell \mathbf{p} \rightarrow \ell \pi^{0} \mathbf{p} \qquad \frac{d^{4}\sigma}{dQ^{2}dx_{B}dtd\phi} = \frac{1}{2\pi}\Gamma_{\gamma}(Q^{2}, x_{B}, E) \left[\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt}\cos(\phi) + k\sqrt{2\epsilon(1-\epsilon)}\frac{d\sigma_{TL'}}{dt}\sin(\phi)\right]$$

• Significant transverse contribution:

Coupling between chiral-odd (quark helicity flip) GPDs to the twist-3 pion amplitude.

- S. V. Goloskokov and P. Kroll, Eur. Phys. J. C65:137 (2010)
- ---- G. R. Goldstein, J. O. Hernandez, S. Liuti, Phys. Rev. D84 (2011) ³⁰

GPDs and Hard Exclusive π^0 Production

GPDs and Hard Exclusive π^0 Production

GPDs and Hard Exclusive π^0 Production

Vector Meson Production: Spin Density Matrix Elements

Experimental angular distributions helicity frame $(\omega \text{ at rest})$ n

$$\frac{d\sigma}{d\phi \ d\Theta \ dQ^2 \ dx_B \ dt} = \Gamma(Q^2, x_B, E) \frac{1}{2\pi} \left\{ \frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} \right\} \mathcal{W}^{U+L}(\Phi, \phi, \cos\Theta)$$
$$\mathcal{W}^{U+L}(\Phi, \phi, \cos\Theta) = \mathcal{W}^U(\Phi, \phi, \cos\Theta) + P_b \mathcal{W}^L(\Phi, \phi, \cos\Theta)$$

15 unpolarized SDMEs in \mathcal{W}^U and 8 polarized in \mathcal{W}^L

$$\begin{split} \mathcal{W}^{U}(\Phi,\phi,\cos\Theta) &= \frac{3}{8\pi^{2}} \Bigg[\frac{1}{2} (1-r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04}-1)\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{04}\}\sin 2\Theta\cos\phi - r_{1-1}^{04}\sin^{2}\Theta\cos2\phi \right] \\ &-\epsilon\cos 2\Phi \Big(r_{11}^{1}\sin^{2}\Theta + r_{00}^{1}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{1}\}\sin 2\Theta\cos\phi - r_{1-1}^{1}\sin^{2}\Theta\cos2\phi \Big) \\ &-\epsilon\sin 2\Phi \Big(\sqrt{2}\text{Im}\{r_{10}^{2}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{2}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+\sqrt{2\epsilon(1+\epsilon)}\cos\Phi \Big(r_{11}^{5}\sin^{2}\Theta + r_{00}^{5}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{5}\}\sin 2\Theta\cos\phi - r_{1-1}^{5}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1+\epsilon)}\sin\Phi \Big(\sqrt{2}\text{Im}\{r_{10}^{6}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{6}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+\sqrt{2\epsilon(1+\epsilon)}\sin\Phi \Big(\sqrt{2}\text{Im}\{r_{10}^{7}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{3}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(\sqrt{2}\text{Im}\{r_{10}^{7}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{7}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin 2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin 2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin 2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin^{2}\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin^{2}\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin^{2}\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin^{2}\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin^{2}\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin^{2}\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin^{2}\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\cos^{2}\Theta - r_{11}^{8}\cos^{2}\Theta \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\cos^{2}\Theta - r_{11}^{8}\cos^{2}\Theta \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\cos^{2}\Theta \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\cos^{2}\Theta \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(r_{11}^{8}\cos^{2}\Theta \Big) \\ &+$$

 $\Phi_{\mathbf{x}}$ w decay plane π ω production plane

34

Vector Meson Production: Spin Density Matrix Elements

2012 COMPASS Exclusive ω Prod. On Unpolarized Proton

2012 COMPASS Exclusive ρ^0 Prod. On Unpolarized Proton

Other COMPTON Scatterings

Timelike Compton Scattering (TCS)

- First ever Timelike Compton Scattering Measurement at CLAS Phys. Rev. Lett. 127, 262501 (2021)
- → Photon polarization asymmetry $A_{\odot U} \sim sin\phi \cdot \text{Im}\widetilde{M}^{--} \rightarrow \text{GPD}$ universality
- → Forward backward asymmetry $A_{FB} \sim cos\phi \cdot \text{Re}\widetilde{M}^{--} \rightarrow \text{Access D-term}$

$$\tilde{M}^{--} = \left[F_1 \mathcal{H} - \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4m_p^2} F_2 \mathcal{E} \right]$$

Double DVCS (DDVCS)

- Double DVCS gives access to phase space where x ≠ ξ
- VGG model: order of about 0.1 pb, about 100 to 1000 times smaller than DVCS
- ➢ Interference term enhanced by BH

Both space-like and time-like photons can set the hard scale

$$\mathcal{H}(\xi',\xi,t) = \sum_{q} e_{q}^{2} \Big\{ \mathcal{P} \int_{-1}^{1} dx \ H^{q}(x,\xi,t) \left[\frac{1}{x-\xi'} + \frac{1}{x+\xi'} \right] - i\pi \left[H^{q}(\xi',\xi,t) - H^{q}(-\xi',\xi,t) \right] \Big\}$$

<u>Uneviewahead</u> <u>What do we expect?</u>

Global Analysis

> Very little is known for chiral-odd GPDs as well.

> We need more experimental inputs!

- Various processes and precise data mapping, with high granularity and phase space wider than what has been covered, are required to fully constrain the entire set of GPDs

Near Future

deriment

Expect fruitful measurements coming from JLab-12

- Released: DVCS & π^0 at Hall A, TCS at CLAS
- DVCS, nuclear DVCS, DVMP, TCS, even DDVCS?

COMPASS/AMBER

- DVCS \rightarrow Re*H* with charge-spin asymmetry
- DVMP of π^0 , ω , ρ , J/ψ
- Transversely polarized target in AMBER?

Silicone proton recoil detector between target & polarizing magnet

- Other possibilities at J-Parc, RHIC, FAIR, or LHC
 - Exclusive Drell-Yan
 - Ultra-peripheral collisions for TCS or exclusive J/ψ production for GPD E of the gluon

The Ideal Experiment

> High & variable beam energy

- Large kinematic domain & hard regime \rightarrow large Q^2 span for evolution
- **Polarized** beams \rightarrow various spin asymmetries
- Variable energy for:
 - $\circ~$ Energy separation for DVCS² and DVCS-BH interferences
 - $\circ~$ L/T separation for pseudo scalar meson production
- Availability of **positive** and **negative** leptons \rightarrow real part of CFFs

\succ H₂, D₂, and nuclear beams

> High luminosity

- Small cross section
- Multi-dimentional binning for fully differential analysis (x_B , Q^2 , t, ϕ)

> Hermetic detectors

• Ensure exclusivity

The Ideal Experiment – Challenges @ EIC

> High & variable beam energy

Lar > Beam polarization:
Pol

Var

Ο

Ο

Ava

Hig

• Sm

Mu

•

- For asymmetry measurements, statistical uncertainties inversely
- proportional to the degree of polarization achieved. -> High polarison required.
 - Longitudinal for e⁻, transverse & longitudinal for polarizable nuclei
 → aim for ~70% polarization for both beams

➢ H₂, I > Luminosity: one of the most demanding aspects of EIC

- Luminosity 10³³ to 10³⁴ cm⁻¹s⁻¹. with 10³³ cm⁻¹s⁻¹, 10 fb⁻¹ integrated luminosity achieved with 30 weeks of operation. GPD would ask for 100 fb⁻¹ → needs higher luminosity of 10³⁴ cm⁻¹s⁻¹.
- ► Here • Ens $\stackrel{\bullet}{}$ 0.03 < |t| < 1.6 GeV² → careful design of the interaction & hadron beam parameters
 - Does not exist (yet)

The Electron Ion Collider

Detector 1 \rightarrow **ePIC**

Auxiliary detectors needed to tag particles with very small scattering angles both in the outgoing lepton and hadron beam direction.

Far-Forward Detectors

2.0

Hadrons

Electrons

DVCS Simulation

Plots: I. Korover (MIT), Kong Tu (BNL)

ECCE Simulation

e+p 18+275 GeV

e+p 10+100 GeV

 $(x0.001) Q^2 = 2 (GeV/c)^2; x_p = 0.01$ $(x0.001) Q^2 = 3 (GeV/c)^2; x_p = 0.01$

 $(x0.001) Q^2 = 4 (GeV/c)^2; x_p = 0.01$ $(x0.001) Q^2 = 5 (GeV/c)^2; x_B = 0.01$ $(x0.001) Q^2 = 6 (GeV/c)^2; x_p = 0.01$ (x1) $Q^2 = 2 (GeV/c)^2$; $x_p = 0.003$

 $(x1) Q^2 = 3 (GeV/c)^2; x_p = 0.003$ (x1) $Q^2 = 4 (GeV/c)^2$; $x_B = 0.003$ (x1) $Q^2 = 5 (GeV/c)^2$; $x_B = 0.003$

(x1) $Q^2 = 6 (GeV/c)^2$; $x_p = 0.003$

 $(x1000) Q^2 = 2 (GeV/c)^2; x_p = 0.0015$ $(x1000) Q^2 = 4 (GeV/c)^2; x_B = 0.0015$

 $(x1000) Q^2 = 6 (GeV/c)^2; x_p = 0.0015$

 $(x1000) Q^2 = 8 (GeV/c)^2; x_p = 0.0015$

1.5

(x1000) $Q^2 = 10 (GeV/c)^2$; $x_B = 0.0015$

2

e+p 5+41 GeV

2.5

-t [GeV²]

Outlook

EIC yellow report

Projected IPD from J/ψ

Projeted IPD from Υ

- Compton Scatterings DVCS, TCS, DDVCS
 - GPD mapping, consistensy of factorisation & universality test

DVMP

- Flavor separation, chiral-odd GPDs
- heavy mesons $(J/\psi, \Upsilon) \rightarrow$ mechanism of saturation by gluon distribution from high to low x_B
- New methods: diffractive process, charged-current processes of meson production...

A lot of interesting properties of proton can be revealed by GPDs and EIC can offer us unprecedented opportunity for a precise determination of GPDs.

> Let's build it.

Backup Slides

GPD Models

• VGG model (Vanderhaeghen, Guichon, Guidal 1999):

- Based on double distributions
- Includes a D-term to restore full polynomiality
- Includes a Regge inspired and a factorized t-ansatz
- Skewness depending on free parameters b_{val} and b_{sea}
- Includes twist-3 contributions
- Dual model: (Guzey, Teckentrup 2006)
 - GPDs based on an infinite sum of t-channel resonances
 - Includes a Regge inspired and a factorized t-ansatz
 - Does not include twist-3

KM10a – – – **(KM10**) Kumericki, Mueller, NPB (2010) 841 Flexible parametrization of the GPDs based on both a Mellin-Barnes representation and dispersion integral which entangle skewness and t dependences **Global fit on the world data ranging from H1, ZEUS to HERMES, JLab** VGG Vanderhaeghen, Guichon, Guidal PRL80(1998), PRD60(1999), PPNP47(2001), PRD72(2005) 1rst model of GPDs improved regularly

KMS12 Kroll, Moutarde, Sabatié, EPJC73 (2013) using the **GK** model Goloskokov, Kroll, EPJC42,50,53,59,65,74 for GPD adjusted on the hard exclusive meson production at small x_B "universality" of GPDs

Goloskokov-Kroll Model for Pseud-mson Production

Eur. Phys. J. A (2011) **47**: 112 DOI 10.1140/epja/i2011-11112-6

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Theoretical Physics

Transversity in hard exclusive electroproduction of pseudoscalar mesons

- S.V. Goloskokov^{1,a} and P. $Kroll^{2,3,b}$
- UNPOLARIZED STRUCTURE FUNCTIONS: $\sigma_{L} \sim \left\{ \left(1 - \xi^{2}\right) \left| \langle \tilde{H} \rangle \right|^{2} - 2\xi^{2} \operatorname{Re} \left[\langle \tilde{H} \rangle^{*} \langle \tilde{E} \rangle \right] - \frac{t'}{4m^{2}} \xi^{2} \left| \langle \tilde{E} \rangle \right|^{2} \right\}$ $\sigma_{T} \sim \left[\left(1 - \xi^{2}\right) \left| \langle H_{T} \rangle \right|^{2} - \frac{t'}{8m^{2}} \left| \langle E_{T} \rangle \right|^{2} \right]$ $\sigma_{TT} \sim \left| \langle \bar{E}_{T} \rangle \right|^{2}$
- POLARIZED OBSERVABLES:

 $A_{LU}^{\sin\phi}\sigma_0 \sim \mathrm{Im}\left[\langle H_T \rangle^* \langle \tilde{E} \rangle\right]$

 $\bar{E}_T = 2\tilde{H}_T + E_T$

Fig: M.G. Alexeev et al. Phys.Lett.B 805 (2020)

 $egin{aligned} &A_{LL}^{\cos0\phi}\sigma_0 \ \sim \ \left|\langle H_T
ight
angle
ight|^2 \ &A_{LL}^{\cos\phi}\sigma_0 \ \sim \ \mathrm{Re}\left[\langlear{E}_T
angle^st\langlear{H}
angle+\xi\langle H_T
angle^st\langlear{E}
angle
ight] \end{aligned}$

 $A_{UL}^{\sin\phi}\sigma_0 \sim \mathrm{Im}\left[\langle ar{E}_T
angle^* \langle ar{H}
angle + \xi \langle H_T
angle^* \langle ar{E}
angle
ight]$

< F >: Generalized Form Factor, convolution of hard subprocess with GPD F

Beam Spin Sum and Diff of DVCS at CLAS

➤ Wide kinematic range → 21 bins in (x_B,Q²) or 110 bins (x_B,Q²,t) with 3 months data taken in 2005
→ CFF constraints

Nucleon Tomography in the Valence Domain

➤ Wide kinematic range → 21 bins in (x_B, Q^2) or 110 bins (x_B, Q^2, t) with 3 months data taken in 2005

Fit of 8 CFFs at **L.O.** and **L.T.** (ImH, ReH, ImE, ReE, ImH, ReH, ImE, ReE)

Dominance of *H* in unpolarized cross-section.
 H_{Im} slope B give information on the trasverse extension of the partons → becomes flatter at higher x_B

Valence quarks at centre Sea quarks spread out towards the periphery.

H.-S. Jo et al. (CLAS) PRL115, 212003 (2015) 212003 N. Hirlinger Saylor et al (CLAS) PRC 98 (2018) 045203

55

Beam- and Target-spin asymmetries at CLAS

Seder et al. PRL114, 032001 (2015)

Pisano et al. PRD91, 052014 (2015)

Nucleon Tomography in the Valence Domain

57