LGADs in US DC-LGAD for HL-LHC AC-LGADs at EIC - eRD112 for EIC R&D

Zhenyu Ye

yezhenyu@uic.edu

Low Gain Avalanche Detector (LGAD)

High Luminosity LHC Era

- Dealing with the effects of pileup interactions in pp collisions will be a major challenge of the HL-LHC era.
- Sharping the tools for new discoveries as well as better measurement precision.

Precise Timing for HL-LHC

- PU interactions significantly overlap in space but are more separable in space + time.
- Per-particle timing allows 4D track and vertex reconstruction
 - PU reduced in each time slice; every object reconstruction is improved
 - Significant benefit to CMS pp physics program

TIDC EIC Workshop, 8/19/2022

Precise Timing for CMS Heavy Ion Physics

CMS Phase-2 Upgrades for HL-LHC (2028+)

MIP Precision Timing Detector

Barrel: Crystal +SiPMEndcap: Low Gain Avalanche Diodes

Muon Systems

Muon tagging 2.4<h<3

Replace DT & CSC FE/BE Electronics

• Complete RPC coverage in region 1.5<h<2.4

CMS MTD - Endcap Timing Layer

ETL service channel

CMS Endcap Timing Layer – Time Resolution

- $\sigma_{ionization}$: random variation in particle energy deposition, determining the amplitude and the shape of the signal ~30 ps up to 1x10¹⁵ n_{eq}/cm², and ~40 ps up to 2x10¹⁵ n_{eq}/cm²
- σ_{jitter}: mostly due to electronics noise and depends on the amplifier slew rate (dV/dt) jitter <40 ps before irradiation. No degrading up to 100 Mrad
- σ_{TDC} : the effect of the TDC binning
- σ_{clock} : contribution from clock distribution

CMS Endcap Timing Layer - LGAD Sensor

FBK UFSD3

Key Sensor Characteristics					
Depletion region thickness	50 µm	Minimize rise time, sufficient charge, gain uniformity			
Pad size	$1.3 \times 1.3 \ mm^2$	Minimize capacitance, Occupancy ~1%			
Sensor size	$2 \times 2 \ cm^2 \ (16 \times 16)$	Optimize wafer usage			
Interpad gap	$< 90 \ \mu m$	Fill factor > 85%			
Time resolution after irradiation	< 40 <i>ps</i>	Up to $1.7 \times 10^{15} n_{eq}/cm^2$			

5x5 array from HPK

Recent prototypes from Hamamatsu (HPK) and Fondazione Bruno Kessler (FBK) focus on

- improving the radiation hardness
- increasing fill factor
- large arrays

CMS Endcap Timing Layer – Readout ASIC (ETROC)

- Dedicate balance act from:
 - Low noise & fast rise time

$$\sigma_{jitter} \sim \frac{e_n C_d}{Q_{in}} \sqrt{t_{rise}} < 40 \ ps$$

- Power budget: 1 W/chip, 4 mW/channel
- **ETROC** innovations:
 - Low power single TDC for both time of arrival and time over threshold measurements
 - Flexible low & high-power modes

✓ ETROC0 : single analog channel
✓ ETROC1: with TDC and 4x4 clock tree
□ ETROC2: 16x16 full functionality
□ ETROC3: 16x16 preproduction chip

TIDC EIC Workshop, 8/19/2022

10

CMS Endcap Timing Layer – Module Design

1: AIN module cover 2: LGAD sensor 3: ETL ASIC 4: Mounting film 5: AIN carrier 6: Mounting film 7: Mounting screw 8: Front-end hybrid 9: Adhesive film 10: Readout connector 11: High voltage connector 12: LGAD bias voltage wirebond 13: ETROC wirebonds

ETL consists of ~9000 modules. LGAD sensors and ETROC chips are bump-bonded together and attached to AlN base plate with thermal adhesive film to make one module. Electric connection between flexible circuits and LGAD/ETROCs are made through wire-bonding.

TIDC EIC Workshop, 8/19/2022

CMS Endcap Timing Layer – Service Hybrid

- Service Hybrid is an assembly of two PCBs, a Power Board and a Readout Board, servicing 12 modules.
- **Power Board** distributes low voltages provided by power supplies to ETROCs, slow control adapter chip, lpGBT, and VTRx+. The voltages are regulated by radiation hard and B-tolerant DC-DC converters on the power board.
- **Readout Board** distributes bias voltages to LGAD sensors, receives and distributes fast control signals and slow controls to ETROCs, and route data and monitoring information from ETROCs to backend DAQ.

CMS ETROC1+LGAD – Test Beam Results

From preliminary analysis of the data from ongoing beam test at FNAL, the resolution of single LGAD+ETROC1 devices with large signal amplitude is 42-46 ps.

$$\sigma_i = \sqrt{0.5 \cdot \left(\sigma_{ij}^2 + \sigma_{ik}^2 - \sigma_{jk}^2\right)}$$

AC-Coupled LGAD

• Due to the presence of JTE and the gap between LGAD cells, 100% fill factor can not be achieved in LGAD. The position resolution is limited to be $\sqrt{1/12}$ of cell size.

- AC-LGAD: replacement of the segmented n⁺⁺ layer by a less doped but continuous n⁺ layer. Electrical signals in the n⁺ layer are AC-coupled to neighboring metal electrodes that are separated from the n⁺ layer by a thin insulator layer.
- AC-LGAD not only provides a timing resolution of a few tens of picoseconds, but also 100% fill factor and a spatial resolution that are orders of magnitude smaller than the cell size. Therefore, it is a good candidate for 4D detectors at future high energy experiments.

Electron Ion Collider (2031-)

Design Goals

- High Luminosity: $L = 10^{33} 10^{34} \text{ cm}^{-2}\text{s}^{-1}$, 10–100 fb⁻¹/year
- Highly Polarized Beams: ~70%
- Large Center of Mass Energy Range: $E_{cm} = 20-140 \text{ GeV}$
- Large Ion Species Range: protons Uranium
- Large Detector Acceptance and Good Background Conditions
- Accommodate two Interaction Regions (IR)

Electron Beam: 5-18 GeV Ion: 40, 100-275 GeV

EIC Detectors

Detector-1 (project detector)

- IP6 (25 mrad crossing angle with crabbing)
- Addresses EIC science program as outlined in the EIC white paper and NAS report
- Ready for Day-1 operations in ~2031
- Working towards pre-TDR/CD-2

Detector-2 (strong comm. interests)

- IP8 (35 mrad crossing angle)
- Complementary to Detector-1
- Require development of 2nd IR
- Ready 2-5 years after Detector-1
- Development at WG level

EIC Detector-1 Reference Design

Tracking:

- Si MAPS
- AC-LGAD (~30 μm)
- µRWELL

PID:

- hp-DIRC
- mRICH
- dRICH
- AC-LGAD (~25 ps)

Calorimetry:

- SciGlass Barrel EMCal
- PbWO EEMCal
- Longitudinally separated EM+Hcal
- Inner HCal (instrumented frame)
- Outer HCal (sPHENIX re-use)

Different to LHC

- lower momentum
- lower occupancy
- less irradiation

17

AC-LGADs in Central Detector: TOF PID + Tracking

Explore **AC-LGAD** technology and leverage established LHC **DC-LGAD** detector designs to minimize cost and risk

- Time-of-flight for $e/\pi/K/p$ identification at low-to-intermediate momentum range
- Provide a high spatial resolution point for tracking

Reference Design (optimization ongoing)

- Timing resolution: ~25 ps per hit
- Position resolution: $\sim 30 \ \mu m$ with 500 μm pitch
- Material budget: ~8% X0
- Total area: $\sim 15 \text{ m}^2$

TIDC EIC Workshop, 8/19/2022

PYTHIA e (18) + p(275) dRICH π/Κ 3σ - 10² (gas) dRICH mRICH 10 (aerogel) (aerogel) hpDIRC AC-LGAD **AC-LGAD AC-LGAD** -2 2

TOF PID coverage

- ETTL: $-3.7 < \eta < -1.74$ 0.15
- FTTL: $1.5 < \eta < 3.5$ 0.15
- CTTL: $|\eta| < 1.4$
- 0.13 $<math>0.15 < p_T < 1.5 \text{ GeV}$

AC-LGADs in Forward Detectors: Timing + Tracking

TIDC EIC Workshop, 8/19/2022

eRD112: AC-LGAD R&D for EIC

- AC LGAD detectors proposed for EIC
 - TOF PID and tracking
 - Roman Pots and B0
- Have common designs in sensor, ASIC etc. when possible, combine R&D efforts [1]

[1] https://wiki.bnl.gov/conferences/index.php/ProjectRandDFY22

	Time resolution / hit	Position resolution / hit	Material budget / layer
Barrel ToF (Tracker)	$<\!30 \mathrm{\ ps}$	(3-30 μm for Tracker)	$< 0.01 X_0$
Endcap ToF (Tracker)	$<\!25 \text{ ps}$	(30-50 μm for Tracker)	e-direction $< 0.05 X_0$
			h-direction $< 0.15X_0$
Roman Pots	$<\!50 \mathrm{\ ps}$	$< 500/\sqrt{12} \ \mu m$	N/A
B0	$<\!50 \mathrm{\ ps}$	$O(50) \ \mu m$	$< 0.01 X_0$

eRD112: AC-LGAD Sensor R&D

Nicolo Cartiglia

R&D Goals

- 15-20 ps timing resolution, $O(3-50\mu m)$ position resolution where needed
- Minimal readout channel density (long strip, rectangular pixel) for reduced power, material and cost
- Plan
 - Produce and test sensors with thinner active volume to achieve the desired timing resolution
 - Optimize implantation parameters and AC-pad segmentation through simulation and real device studies
 - Engage commercial vendors to improve fabrication process and yield

eRD112: AC-LGAD Sensor R&D

- FY22:
 - Production of thin (20 and 30 um) sensors for ToF application with time resolution ~20 ps by BNL IO.
 - Production of medium/large-area sensors with different doping concentration, pitch, and gap sizes between electrodes to optimize performance by BNL IO and HPK.
- FY23 Q3: Design and submission for fabrication of advanced sensor prototypes with <20 ps time resolution and space resolution that matches RPs, ToF, and Tracker requirements. This will be baseline for CD2/3A.
- **FY24 Q2**: Sensor batch submission with optimized sensor layouts and performance, based on laboratory and test-beam results. This sensor design will be used as baseline for the CD3 review.
- FY25: Module-size sensor fabrication with target time and space performance.

Strip AC-LGAD Sensor Wafer for EIC by BNL

TIDC EIC Workshop, 8/19/2022

500 um*1cm strip AC-LGAD sensor mounted on test board

eRD112: Frontend ASIC R&D

- R&D Goal
 - 15-20 ps jitter with minimal (1-2 mW/ch) power consumption, match AC LGAD sensors for EIC
- Strategy
 - Continue the ASIC prototyping effort for RPs by IJCLAB/Omega (1st submission in FY22 funded externally)
 - Utilize the design from ATLAS and CMS, and investigate common design for RP/B0 and ToF
- Milestones
 - FY22 (funded externally):
 - A first ASIC prototype that is compatible with EIC Roman Pot requirements and can read out an AC LGAD with ~500 um pitch and ~30 ps time resolution.
 - **Deliverable (Sept. 2022)**: A prototype ASIC design to readout AC LGADs using signal sharing across neighboring electrodes and has 30 ps time resolution with low power consumption.
 - FY23 Q1: 2nd prototype design and submission with better performance and extended features. Baseline for CD2 review.
 - FY24 Q2: 3rd ASIC submission, aiming to match ToF timing requirements. Baseline for the CD3 review.
- _{8/18/22}• **FY25**: Full-scale ASIC submission.

eRD112: Frontend ASIC R&D

EICROC0 (submitted in 3/2022) by Omega/Irfu/AGH

- Preamp, discri. taken from ATLAS ALTIROC
- I2C slow control taken from CMS HGCROC
- TOA TDC adapted by IRFU Saclay
- ADC adapted to 8bits by AGH Krakow
- Digital readout: FIFO depth8 (200 ns)

ASIC Efforts at UC Santa Cruz

FCFD0 (submitted in 2021) at Fermilab

- Adapt the Constant Fraction Discriminator (CFD) principle in a pixel when a CFD is paired with a TDC, one time measurement gives the final answer.
- Charge injection consistent with simulations: ~30 ps at 5fC, and <10 ps at 30 fC, with LGAD like pulses
- Tests with beta sources and beam are planned

Institution		Technology	Output	# of Chan	Funding	Specific Goals	Status
INFN Torino	FAST	110 nm CMOS	Discrim. & TDC	20	INFN	Large Capacitance TDC	Testing
NALU Scientific	HPSoC	65 nm CMOS	Waveform	5 (Prototype) > 81 (Final)	DoE SBIR	Digital back-end	Testing
Anadyne Inc	ASROC	Si-Ge BiCMOS	Discrim.	16	DoE SBIR	Low Power	Simulations, final Layout, Board design

TIDC EIC WERCE, OCO022

Summary and Outlook

- eRD112: develop sensor, ASIC, and other key components for AC-LGAD detectors at EIC
 - Continue sensor R&D, ramp up efforts on ASIC, start development of other components including mechanical structure, cooling, on- and off-detector electronics
 - Come up with preliminary system designs of AC-LGAD detectors for CD2/3A review (Oct 2023)

Mailing list: <u>https://mailman.rice.edu/mailman/listinfo/lgads-eic</u> Indico page: <u>https://indico.bnl.gov/category/323/</u>

- AC-LGAD is the selected technology by EIC Detector-1 for timing and tracking in central and far-forward detectors. Other fast timing technologies could be considered for Detector-2
 - **Opportunity**: new detector technology development; multi-million and multi-year projects.
 - Challenge: strict detector performance requirements; tight schedule.

Timeline – What is Coming for EIC				
	CD-0 approval	December 19, 2019		
	Community-wide Yellow Report effort	Dec 2019 – Feb. 2021		
	CD-1 review (includes CDR)	January 26-29, 2021		
	Call for Collaboration Proposals for Detectors	March 6, 2021		
	CD-1 approval	June 29, 2021		
	DOE/OPA Status Review	October 19-21, 2021		
	Status Update to Federal Project Director	June 28-30, 2022		
	Cost and Schedule Event(s)	May-June 2022		
	Technical Subsystem Reviews	Jan. – Dec. 2022		
	OPA Status Review	January 2023		
	Preliminary Design Complete & Review	May 2023		
	Final Design/Maturity Readiness for CD-3A Items	May 2023		
	CD-2/3A review (expectation), requires pre-TDR	~October 2023		
	CD-2/3A (expectation)	~January 2024		
	CD-3 review (expectation)	~January 2025		
	CD-3 (expectation), requires TDR	~April 2025		

TOF WG Mailing list: <u>eic-projdet-tofpid-l@lists.bnl.gov</u> Indico page: <u>https://indico.bnl.gov/category/414</u> FF WG Mailing list: <u>eic-projdet-FarForw-l@lists.bnl.gov</u> Indico page: <u>https://indico.bnl.gov/category/407</u>

• Everyone is VERY welcome to join eRD112, TOF and/or Far-forward working groups TIDC EIC Workshop, 8/19/2022 Zhenyu Ye @ UIC