DC-LGAD in Taiwan

Rong-Hwei Yeh

Institute of Computer Science& Information Engineering, Asia University, Wufeng, Taichung, Taiwan, R.O.C.

Outline

- ✓ DC LGAD current progress at TSRI
- ✓ LGAD process flow
- ✓ LGAD Process parameter decision by TCAD simulation
- ✓ LGAD CV & IV characteristics
- ✓ Layout design
- ✓ Future plans : AC-LGAD

Low Gain Avalanche Detector (LGAD)

Feature

- High field obtained by adding an extra p⁺ below the n⁺
- controllable moderate internal gain ~10
- High time resolution of ~50ps
- Thin active layer

JTE

(N)

Depth

え

Real status

- 6" p-type, 625 μ m, FZ-wafer with 5K Ω -cm resistivity (due to equipment of TSRI)
- Gain layer parameter control
- Junction Termination Extension (JTE)
- P-Stop

Ref. Design and fabrication of an optimum peripheral region for low gain avalanche detectors; NIMA, Volume 821, 11 June 2016, Pages 93-100

Ref. Technology developments and first measurements of Low Gain Avalanche Detectors (LGAD) for high energy physics applications; NIMA, Volume 765, 21 November 2014, Pages 12-16

LGAD Process

1	Backside imp.
2	JTE&GR imp.
3	P-stop imp.
4	Drive in 1 (長3000A Oxide)
5	Gain layer imp.
6	Drive in 2
7	N ⁺⁺ imp.
8	Drive in 3
9	PECVD 0.5um oxide
10	Contact etch
11	Front Metal dep.
12	Front Metal etch
13	alloy
14	Passivation dep.
15	Passivation etch
16	Back Metal dep.
17	alloy

• 5-8 steps that most influential the gain feature

Ref. Development of a technology for the fabrication of Low-Gain Avalanche Diodes at BNL; NIMA, Volume 934, 1 August 2019, Pages 52-57

LGAD Process parameter decision by TCAD simulation

- Various gain layer and N⁺⁺ process parameters
- The suitable parameter: Gain 5e13/180keV 1100C/200min N⁺⁺ 1e15/100keV 1100C/200min

LGAD CV & IV characteristics

1.00

GR2

Gain = I measurement/I photocurrent

560

4.0E¹³

- The higher the gain layer dosage, the higher the gain, but the lower the breakdown voltage
- The breakdown occurs around the guard ring edge at the low gain layer dosage

Before BD: Current Density (Max: 0.01A/cm²)

Gain layer dose = 4.8E13cm⁻²

Gain layer dose = 4.6E13cm⁻²

Dosage of N⁺⁺

 The higher the dosages of N⁺⁺, the lower effective of p-type concentration, the lower the gain, but the higher the breakdown voltage

N++ dose	V _B (V)	BD location	Gain 1 at 100V	Gain 2 at 100V
6.0E ¹⁴	600	GR2	0.86	1.08
4.0E ¹⁴	557	GR2	0.89	1.13
2.0E ¹⁴	435	Main Pad	1.68	2.12

Gain = I measurement/I photocurrent

Current (A) 0--0

 10^{-7}

 10^{-8}

 10^{-9}

10⁻¹⁰

 10^{-1}

 10^{-12}

Bias (V)

Gain measurement

1. Gain = I measurement/I photocurrent

2. Gain = $I_{active area}/I_{dead area}$

3. Gain = $I_{LGAD}/I_{PN \text{ diode}}$

Gain layer dose(cm ⁻²)	BD voltage, V _B (V)	Gain 1 (at 100V)	Gain 2 (at 100V)	Gain2 (at 40V)	Gain 3 (at 100V)	Gain3 (at 40V)
5.5E13	186	4.91	6.18	2.97	5.59	2.68
5.0E13	435	1.68	2.12	1.77	1.91	1.60
4.5E13	560	1.13	1.26	1.22	1.29	1.22
4.0E13	560	1.00	1.22	1.22	1.13	1.13

Ref. Gain estimation of RT-APD devices by means of TCAD numerical simulations; IEEE, April 2011, 11931234 Ref. Study of interpad-gap of HPK 3.1 production LGADs with Transient Current Technique; NIMA, Volume 979, 1 November 2020, 164494 Ref. A novel detector for low-energy photon detection with fast response: IEEE(NSS/MIC), 2018, pages, 1-4

Ref. A novel detector for low-energy photon detection with fast response; IEEE(NSS/MIC), 2018, pages, 1-4, 18972980

Layout design

- 1X1 LGAD structure, width of JTE (wj), location (dg), width of gain layer and guard ring design
 - Area : 500*500 μm²~ 2*2mm²
 - ➢ wj : 20~40 μm
 - > wp : 5~20 μm
 - > dg : 0~10 μm
 - ➢ GR : 2/3 rings

201-285-J20-1

Ref. Design and fabrication of Low Gain Avalanche Detectors (LGAD): a TCAD simulation study; JINST 15, March 2020, C03008 Ref. A novel detector for low-energy photon detection with fast response; IEEE(NSS/MIC), 2018, pages, 1-4, 18972980 Ref. The Effect of a Collector Ring on Low Gain Avalanche Detector for High Energy Physics Application; IEEE(NSS/MIC), 2019, 18972980 Ref. Ke Ming Chou Huang, TCAD simulation of silicon detector; https://hdl.handle.net/11296/ncj457

Various of dg

Bias (-V)

Dg-horizontal electric field

X (μm)

X (μm)

X (μm)

X (μm)

X (μm)

Dg- horizontal electric field

The gain value with various location

Microns

Microns

Future plans: AC-LGAD

- Almost 100% Fill Factor can be
- The signal is collected on the n++ electrode
- The metal AC pads act as capacitors, they are charged by the signal
- AC-PAD LGAD by change three masks of the DC LGAD masks :1. metal, 2. contact, 3. passivation

Ref. First demonstration of 200, 100, and 50 μm pitch Resistive AC-Coupled Silicon Detectors (RSD) with 100% fill-factor for 4D particle tracking; IEEE Electron Device Letters PP(99):1-1, September 2019 Ref. LGAD designs for Future Particle Trackers; NIMA, volume 979, 2020, 164383

Thank you for your attention !!