TIDC EIC Workshop Detector and Physics opportunities for Taiwan EIC team - III

19 August 2022 @ NCKU

Yi Yang National Cheng Kung University

Detector

Yi Yang

19 August 2022

TIDC EIC Workshop

2 / 53

EPIC Detector

19 August 2022

Detector: Support Structure

Yi Yang

19 August 2022

The Forward Silicon Tracker

Design of Mechanical Structure

Manufacture of Cooling Tube

TBD

- Passivation treatment on the raw 316 stainless steel tube
- Use Tube Bending Die (TBD) to bend the tube
- Use 3D printed Miscellaneous Service Tool (MST) to check the dimensions.
- 4) Braze the connectors to the tube
- 5) Leakage test
- 6) Clean the cooling tube

Injection Molding for MS

 The mechanical structure are made using injection molding method
 <u>Very challenging</u>: thin + large + complex structure many components embedded

Moving Half (Core Side)

Fixed Half (Cavity Side)

Yi Yang

19 August 2022

TIDC EIC Workshop

8 / 53

- Timeline:
 - **2019-Nov**: produced 1st (PEEK+30% CF) and 2nd (PEEK+30% GF) prototype
 - Obvious flatness issue
 - **2019-Dec**: modified the design due to the change of the positions of APV chips and produce 3rd prototype
 - ➔ Flatness issue is not solved
 - 2020-Jan: increased the thickness from 1.5 mm to 2.0 mm + changed the injection points from side to center
 - ➔ Flatness issue is not solved
 - **2020-Feb**: use pure PEEK + extra cooling on molds
 - Flatness is significantly improved, but not 100% solved 2020-May: use rigid quality control selections
 - → Flatness improved (solved)

Assembly Procedure: Facilities

- Use the robotic machine at Taiwan instrumentation Detector Consortium (TiDC, <u>https://www.taiwan-tidc.org</u>) to assemble
 - 1) Hybrid PCBs to inner and outer structures
 - 2) Inner wedge and outer wedge

Optical Gauging Products (OGP)

Assembly table and gantry

Yi Yang

19 August 2022

Quality Control

- Use OGP to measure the **flatness** (maximum difference between measured points)
- 5 points at chip areas and 13 (9) points at sensor area
- Acceptance: < 500 μm

Assembly Procedure: Outer MS

Outer Hybrid + tray

 Place the pickup tool, outer MS + tray, outer Hybrid + tray on table

pickup tool

- 2) Place guide pin on outer MS
- 3) Apply glue on outer Hybrid
- 4) Use camera to locate the reference points
- 5) Glue

Outer MS + tray

Gluing Procedure for Inner Hybrid

Glue the inner MS first

Place pickup tool, inner MS + tray, outer wedge + tray on 1) table

- Use camera to locate reference points 2)
- Pick up inner MS and glue it on the outer wedge 3)

- □ Follow the "same" procedure as the outer Hybrid
- Place pickup tool, inner Hybrid + tray, outer wedge + inner MS + tray on table
- 2) Use camera to locate the reference points
- 3) Pick up inner Hybrid and glue it on the inner MS

Assembly Procedure: Components on Hybrid

- 1) Solder components manually
- 2) Electrical open connection test

QA for Production

All the measurements are recorded on Google Sheet: <u>https://docs.google.com/spreadsheets/d/1YLm95aj0zIxxCnsfy0XVoxeI9FWD4</u> <u>RHUv-Pe4qCOfSc/edit?usp=sharing</u>

Module ID	OSF1	OSF2	ISF	OCF1	OCF2	OCF3	OCF4	ICF1	ICF2	ICF3	ICF4	ORPX1	ORPY	ORPY2
FST-11	207.36	194.35	286.39	97.19	59.43	31.42	73.15	60.58	98.73	133.33	89.85	41.12	6.08	6.75
FST-12	285.54	230.17	329.6	110.12	56.26	131.73	55.3	17.22	85.92	83.71	32.61	59.59	29.96	30.56
FST-13	246.73	165.61	387.82	58.05	113.73	57.96	25.07	188.06	173.58	197.44	124.9	47.81	9.13	40.68
FST-14	350.48	191.1	207.8	91.41	120.57	183.44	18.95	10.41	12.99	53.68	18.26	20.67	26	17.49
FST-15	299.74	231.05	247.37	26.59	66.23	60.56	60.68	87.93	96.57	112.93	93.02	7.39	17.95	1.62
FST-16	223.66	208.09	347.64	41.48	122.14	24.98	65.22	45.09	99.86	111.18	69.67	52.96	71.88	40.93
FST-17	193.94	177.52	148.62	83.07	48.64	62.03	69.88	106.19	109.41	121	76.97	99.08	45.04	26.45
FST-18	194.51	186.23	217.09	45.59	24.77	73.35	55.62	48.08	52.21	95.42	53.15	50.77	6.57	17.26
FST-19	194.63	222.71	308.47	58.62	49.05	34.73	54.15	28.03	99.43	103.29	66.71	98.54	6.99	92.65
FST-20	290.91	199.34	40.22	59.38	55.12	76.72	57.72	56.33	113.15	135.63	98.1	6.96	47.86	14.4
FST-21	131.72	94.04	100.09	65.97	110.06	33.42	72.89	69.01	132.39	162.31	87.64	108.11	14.89	20.75
FST-22	136.28	128.44	152.55	92.76	135.82	68.95	54.76	116.37	164.88	205.1	146.78	35.08	20.65	16.85
FST-23	85.3	159.93	37.5	107.18	120.74	92.29	110.59	12.1	46.48	40.75	36.32	84.1	6.51	18.17
FST-24	204.53	200.03	88.62	45.62	92.2	116.51	94.46	24.68	70.43	96.06	65.1	53.19	18.53	30.46
FST-25	251.82	135.2	96.23	44.96	123.47	61.34	78.09	56.97	107.33	106.81	64.3	36.01	0.44	57.84
FST-26	208.01	138.57	375.38	49.37	83.94	19.86	46.75	27.04	35.2	51.12	30.02	51.12	21.89	8.24
FST-27	170.18	206.67	145.83	63.82	82.6	94.26	107.16	68.93	140.57	145.54	109.35	66.91	82.6	18.16
FST-28	146.378	153.47	91.27	63.71	87.16	57.88	46.47	38.71	69.65	92.77	61.35	15.53	9.79	40.45

17 / 53

Yi Yang

19 August 2022

Production Statistics

Grading Matrix

Assumption: all modules are good unless it encounters some technical issue, e.g. overflow glue...

	_	A: < 30 % (100 pts)	B: 30 – 60% (90 pts)	C: 60 – 90% (80 pts)	D: > 90 % (60 pts)	
OSF x 2 (2	.5%)	< 171 µm	171 – 205 μm	<mark>205 – 270</mark> μm	270 – 351 μm	
ISF (25%)		< 94 µm	94 – 218 μm	218 – 276 μm	376 – <mark>388 μ</mark> m	
OCF x 4 (1	.0%)	< 55 μm	55 – 70 μm	70 – 114 μm	114 – 184 μm	
ICF x 4(10%)		< 52 μm	<mark>52 –</mark> 88 μm	<mark>88 –</mark> 141 μm	141 – 206 μm	
ORP (15%)	X	< <mark>40 μm</mark>	40 – 53 μm	<mark>53</mark> – 99 μm	99 – 109 μm	
	Y x 2	< 15 µm	15 – 26 μm	<mark>2</mark> 6 – 58 μm	58 – 153 μm	
	Y	<mark>< 11 μm</mark>	11 – 5 <mark>1 μm</mark>	51 – 132 μm	132 – 165 μm	
IRP (15%)	X x 2	< 22 μm	22 – 44 μm	44 – 100 μm	100 – 349 μm	

19 August 2022

Final Class

Overall Statistics

Production modules: FST-07 to FST-79 (total 73)

- Class A: 29 (passed 250 nm cut: 29)
- Class B: 31 (passed 250 nm cut: 20)
- Class C: 5
- Class F: 8

49 very good ones

22 / 53

Thermal Analysis

- Careful thermal analysis is performed by using single module with water cooling
- Temperature at thermal equilibrium is less than 26 °C

NTC for ambient

Consistent results between experiments and simulation 0.25W

Thermal Analysis – Real Module

- Cooling test on FST-04
 (Dec. 21, 2020@BNL)
 Ambient T: 19.8 °C
 - Coolant T: 22.2 °C

Soft Tube and Connector

Connect 3 wedges to be 1 set

→ Total 4 in and 4 out for one disk

Plan A: plastic soft tube

Recommended Flex Hoses for General Use

Tubing Name	Type	Extraction %	Weight gain %	Comments
Tygon [™] C-544-A I.B.	A Clear Braided Polyurethane	0.09	0.3	Excellent Compatibility. Good pressure resistance. Temperature Range –73 to 82C. www.tygon.com
Tygon 3370 I.B.	Clear Braided Silicone	1.47	4.8	Good Compatibility. Good Pressure resistance. Temperature Range –73 to 160C.
Flexfab™ 5521-0)50 Green braided silicone hose	2.08	NA	Good Compatibility. Good Pressure resistance. Temperature range –54 to 150C. http://www.flexfab.com
Nalgene [™] 290 PUR	Clear Yellow. No Braid.	0.74	0.3	Excellent Compatibility. Little pressure resistance.

Plan B: metal soft/hard tube

Yi Yang

Soft tubes

Connector

19 August 2022

PLUG

DME

Soft Tube Compatibility & Radiation Tests

26 / 53

19 August 2022

Yi Yang

Burst Test on Soft Tubes

3370: 0 kGy C-544: 3.2 kGy 3.2 MPa → 1 MPa 4 MPa

Deformation Pressure

Radiation dosage	3370	C-544
16 kGy	2.0 MPa	> 4 MPa
3.2 kGy	2.5 MPa	> 4 MPa
0 kGy	3.2 MPa	> 4 MPa

Yi Yang

19 August 2022

2 TIDC EIC Workshop

27 / 53

Detector: Silicon Sensor

Yi Yang

19 August 2022

TIDC EIC Workshop

28 / 53

Silicon Sensor in the Market

About 90% of the silicon sensors are made by Hamamatsu

Taiwan is the idea place to provide service of developing and manufacturing the <u>high-quality</u> silicon sensors to fundamental science (high energy physics)

Yi Yang

19 August 2022

Silicon Strip Sensor

- A typical AC-coupled p-in-n silicon strip sensor:
 - Reverse bias of p-n diodes to deplete free charges in the silicon
 - Signal proportional to thickness: typically 300-500 microns

19 August 2022

TIDC EIC Workshop

Yi Yang

31/53

(Preliminary) Fabrication Procedure – cont.

Current Key Processes

1. Masks @ Hsinchu/Taiana

- Design
- Manufacture

3-4 months (Need

(Need help from NCKU EE/TSRI)

- 2. Process flows (1-9) @ Hsinchu
 - Implant
 - Insulator layer
 - Polysilcon
 - Al (first layer)

Implantation E500HP Horizontal Furnace E-gun

_ 4-6 months

(Need help from TSRI/ITRI to speed up)

3. Process flows (10-12) @ Tainan

- Protection layers (SiO2)
- AI (second layer)

1-2 months

(Having lots help from TSRI, Tainan)

Key Parameters in Fabrication

Implant energy & dosage
Polysilicon resistor
Insulator layer width
Aluminum width

Know how, valuable...

Need to tune/optimize them carefully

Yi Yang

19 August 2022

Fabrication measurement in TSRI

Wet bench Clean wafer

PECVD Deposition of SiO₂

Mask aligner

Yi Yang 19 August 2022 TIDC EIC Workshop

Detector: Scintillator-based

Yi Yang

19 August 2022

NSPO Sounding Rocket Mission

Hybrid Rocket from NCKU (Prof. Chao) Mission duration: 15 minutes Height of Rocket: 80 - 120 Km Two scientific missions: • Plasma • Cosmic rays

Plasma science

Mesosphere-Ionosphere Plasma Exploration CompleX (MIPEX)

- Planar Langmuir Probe (PLP)
 - Electron density
 - Electron temperature
- ii. <u>Single Axis Ion Velocity Analyzer</u> (SAIV)
 - Ion density
 - Ion drift velocity direction
- iii. Intensified Retarding Potential Analyzer (IRPA)
 - Ion density

Cosmic ray physics

Compact Scintillator Array Detector (ComSAD)

- Cosmic ray flux
- Cosmic ray energy/angle spectrum

Yi Yang

19 August 2022

ComSAD System Overview

AND LAND KUNG C

ComSAD is a scintillator-based cosmic ray detector equipped with 64 plastic scintillators-SiPM detection units

GEANT4 Simulation for ComSAD

- Use GEANT4 package to simulate the detector response for 0.1, 1 and 10 GeV incident protons
 - → Can (roughly) distinguish cosmic rays
 - with different energies

Yi Yang

19 August 2022

Current Status and Future

Yi Yang

Similar technology can be applied on Gamma Ray detector for CubeSat

Single SiPM for plastic scintillator

Plastic scintillator

SiPM array for LYSO scintillator

LYSO scintillator

19 August 2022

Summary of Detector Opportunities

- Detector R&D is very fun, especially from scratch
- Supporting structure and sensor developments are both important
- **Currently working on the EIC Barrel TOF supporting structure**

Physics

Yi Yang

19 August 2022

TIDC EIC Workshop

44 / 53

EIC Physics Working Groups

Inclusive
SIDIS
Exclusive, Diffraction, and Tagging
BSM & Precision EW
Jets and Heavy Flavor

low x

energy

Yi Yang

The bound state of two heavy quarks (qq̄)
 J/ψ is a cc̄ (1974) and Y is a bb̄ (1977) bound state

Historically physicists tried to understand the production mechanism and polarization

The production includes two parts:

- Hard process (short distance): the production of qq pair and it can be calculated by pQCD
- Soft process (long distance): the formation of quarkonium from qq and it can be parameterized by phenomenological models

J/ψ Cross-Section in p+p Collisions @ 500 GeV

- Consistent with CGC+NRQCD, NLO NRQCD calculations and ICEM (prompt J/ψ)
- $\Box \psi(2S)$ to J/ ψ ratio follows the world trend (adding 2017 data)

J/ψ Production with jet activity

Study J/ψ production associated with jet activity could provide theorist a new variable to distinguish different models and have a better understanding of quarkonium production

Study QGP via Quarkonium

- T/T_c $1/\langle r \rangle$ [fm⁻¹] Quarkonium suppression is one of smoking guns of the Y(15) J/w(15) QGP formation (by T. Matsui and H. Satz PLB 178 (1986) 416) x,'(2P) Y"(35) ¥(25) Color-screening: Quarkonium dissociates in the medium EPJ C61 (2009) 705 Sequential melting: different states dissociate at different temperatures A. Rothkopf Interpretation of quarkonium suppression is complicated Hot nuclear matter effects Yield Dissociation Regeneration Regeneration from deconfined quarks Quarkonium Medium-induced energy loss Formation time effect **QGP** melting Cold nuclear matter effects
 - nPDF, nuclear absorption, co-mover et.al

Yi Yang

Feed-down from excited charmonium states and B-hadrons

19 August 2022

- No obvious p_T dependence in R_{AA} in 0 20% centrality bin
- Rising R_{AA} with p_T in 20 40% and 40 60% centrality bins
 - Rising trend at high p_T could be due to formation time effects, B-hadron feed-down
- Suppression at low p_T: dissociation, Cold Nuclear Matter (CNM) effect, regeneration
 - Strong suppression at high p_T in central collisions is a clear sign of dissociation since regeneration contribution and CNM effects are small

γ in Au+Au Collisions @ 200 GeV

□ Clear Υ (1S, 2S, 3S) signals in Au+Au collisions → First Υ (1S, 2S, 3S) → $\mu^+\mu^-$ measurement at STAR

Yi Yang

19 August 2022

$\gamma R_{AA} vs. N_{part}$

- Suppression increasing with centrality
- $\Box \Upsilon(2S+3S)$ is more suppressed than $\Upsilon(1S)$, in central collisions

Sequential melting

- RHIC vs. LHC:
 - Υ(1S): similar suppression as the CMS measurement
 - Υ (2S+3S): hint of less suppression at RHIC than at LHC

Summary of Physics Opportunities

- Heavy quarkonium can provide us lots of insights of QCD
- Lots of topics are available related to heavy quarkonium and jet

The current STAR Hard Probe (Heavy Flavor + Jet) Convenor

19 August 2022