High speed Fiber-Optics for the EIC and future rad-hard applications

TIDC EIC workshop NCKU, Tainan 2022.08.18-19

> **S. Hou** Academia Sinica

Proposal to EIC

- DAQ and data links will be totally Fiber-optics
- Taiwan opto-electronics IT is the primer production choice LHC upgrade electronics are TW made
- Join EIC, take up data-link duty for DAQ or a sub-det.

Goal → small funding on RD stay on Rad-hard Opto-electronics TW as the production site

Opto-fiber RD items

Fiber Rad-hard

MM Ge-doped @INER Co60 TID study is finishing COTS, Fluorine-dope, pure Silica fiber Rad-hard study

Rad-hard Active opto-electronics

850 nm VCSEL, PD characteristics, COTS 光環, II-VI, ... NIEL @INER 30 MeV protons

– ASICs, laser driver, PD TIA deadly issue!

lack of expertise!! Collab. with HEP groups, acquire known chips check on COTS

- Transceiver >10 Gbps

fabrication vs speed: PCB, passive, connectors, design, 前鼎, 源傑, ... coupling: active, lens, to fiber-ends NIEL, Ageing to Bit-Error-Rate

Facilitate INER proton beam

for Rad-hard studies

Fiber as wave guide Fiber-optics: innovation \rightarrow IT COTS: opto-electronics and fibers

The 1966 paper

Dielectric-fibre surface waveguides for optical frequencies

Demonstration of silica glass as waveguide material

- An Infrasil sample from Schott Glass showed an attenuation as low as 5 dB/km at a window around 850 nm!
- 850 nm GaAs laser emission region.

M.W. Jones and K.C. Kao, "Spectrophotometric studies of ultra low loss optical glasses II" J. Sci. Instrum. (J. Phys. E), Vol.2, pp. 331-5, 1969.

Optical fiber basics

Fiber Modes : Multi-guided modes: pathways grouped Single mode fiber: 0th mode no reflection

Optical fiber making

PCVD plasma chemical vapor Deposition MCVD modified chemical vapor deposition OVD outside vapor deposition VAD vapor axial deposition Fused Silica Tubes, pure SiO_2 for Fiber Optics,

Bare Fiber Reel

Fiber Cable

······

Copper wires vs Fiber cable

Fiber Optic Cable 1 Gbps \rightarrow 10 Gbps \rightarrow 25 Gbps **OM2 OM3 MM <500m SM~1km**

Twisted Pair Cable e.g. RJ45 CAT6 10 Gbps <5m

Coaxial cable e.g. RF, BNC 10 Gbps <5m

Network with fiber cable: **Need Transceivers**

ROUTER

WITH

Wi-Fi

32

Commercial opto-electronics

- Transceivers:

Laser diodesas light sourcePIN diodesas photo detectorLaser Driver chipconvert electrical signals to opticalTransimpedance amplifier TIAon PD current to electrical signalsControl ICfor the application protocols

Laser type	Wavelength (nm)	Fiber type	Photo- diode type	Data rate (Gb/s)	Launching power	cost	Distance
VCSEL	850 1310	MM SM	GaAs InGaAs	10	Low	Low	< 300 m
FP	1300	MM SM	InGaAs	10	Med	Med	< 2 km
DFB	1310 1550	SM	InGaAs	>10	High	High	> 10km

850-nm VCSELs - for short-distance over multimode fiber

1300-nm VCSELs - for longer-distance communication over single-mode fiber

1550-nm VCSELs - tunable sources for DWDM multiple transmissions over one fiber

FIBER Radiation Induced Attenuation (RIA) by Total Ionization Dose (TID) at INER Co60 facility

Ge-doped MM fiber test, day-1

Ge-doped multi-mode fiber 50/125 µm M3,OM4 >10 Gbps

- water bath, constant temperature, online measuremnt
- 50 nm source \rightarrow sample \rightarrow power meter
- Gamma dose calibration, Alanine capsule

Co60 irradiation:

- ON daily working hours ~10hr RIA
- OFF overnight

Annealing

Ge-doped MM fiber, Co-60 test

Fiber Radiation Induced Attenuation (RIA)

RIA = (IL(0) - IL(t))/LengthIL(dB) = $10 \times log10 (P_T/P_R)$

IL insertion loss

 P_{T} transmitter, P_{R} received

Dependences : Dose rate, Temperature

Fibers tested at Dose rate 3.0 Gy/hr, 1.5kGy/hr Irrad ~8hr daytime, anneal overnight, over 1 week

台廠 Ge-doped MM fiber RIA instant vs annealed

Plot Instant RIA, at daily max dose, Plot RIA after 10 hr annealing

- Dose Rate dependence:
 higher rate higher instant RIA
- Temperature dependence: lower T, higher instant RIA

Annealed RIA: smooth logarithmic curve toward high TID

Rad-hardness of opto-electronics, COTS USB, SFP+ devices >5 Gbps Light-coupling material VCSEL, Control IC, BER

Laser diodes, light sources

Spontaneous light emission Laser Diodes (LD), Light Emitting Diodes (LED) LED LD has an optical cavity for stimulated emission. *Light Amplification by Stimulated Emission of Radiation (LASER)*

--ww

Photo-detectors

VCSEL degradation, annealing

VCSEL light degradation → linear to fluence rad-hard fiber connected to readout, independent of flux rate

Fast annealing by charge injection at operation current (10 nA) applied

VCSEL annealing in time

VCSEL rad-hardness summary

VCSEL light degradation in proton radiation (ATLAS Oxide confined) deviates from the NIEL calculation

PIN responsivity, dark current

- Tohoku 30 MeV proton
- Control beam on/off
 LED light on/off
- Online PIN V_R scan

PIN proton damage, summary

Degradation of responsivity (I/L) proton 2E14									
						30 MeV		70 MeV	
	V _R	fc	diam.	I/L	I/L I	Dark	I/L I	Dark	
	Vol	GHz	μm	A/W	ratio	nΑ	ratio	nA	
Truelight	-10		100	0.55	45%	70	45%	50	
S9055	-2	1.5	200	0.32	100%	40	100%	20	
S9055-01	-2	2.0	100	0.20	100%	15	100%	10	
S5973	-3	1.5	400	0.53	70%	100	80%	50	
G8500-01	-5	3.0	40	0.11	45%	0	80%	0	
G8500-02	-5	1.9	80	0.25	40%	0	72%	0	
G8500-03	-5	1.5	120	0.40	35%	0	72%	0	

- PIN rad-hardness
 diameter, thickness →
 A/W, speed & rad-hard
- Proton energy dependence Si PIN : compatible with 30 MeV and 70 MeV protons GaAs PIN : twice damage by 30 MeV than 70 MeV protons

70 MeV proton

Total Ionizing Dose to Commercial driver

- QSFP, miniPOD, PPOD, ONET8501V, ONET1101L
 tested with X-ray or γ-ray, none meet the ATLAS LAr radiation requirement.
- Kintex 7, ONET8501

tested with a neutrons in Los Alamos SEU rate of Kintex 7 is too high for LAr.

	Vendor	Part#	Gbps	# ch	Rad type	(krad/hr)	TID (krad)
QSFP	Avago	AFBR-79EIDZ	10	4	⁶⁰ Co γ	10	75
miniPOD	Avago	AFBR-810FN1Z	10	1	x-ray	360	66
PPOD	Avago	AFBR-810EPZ	10	12	x-ray	360	150
VCSEL driver	TI	ONET8501V	10	1	x-ray	39	178
F-P laser	TI		10	1	x-ray	9.6	464
driver	11	UNETTIOL	10	I	⁶⁰ Cο γ	10	< 900

	Vendor	Part#	# of ch	Flux (n/cm²/s)	Fluence (n/cm ²)	# errors	σ (cm²)
Kintex-7	Xilinx	XC7K325TFF G900	16 (2 tested)	4.6E5	2.1E11	4/4 (2 shared)	1.6E-11
VCSEL driver	TI	ONET8501V	1	4.6E5	2.1E11	0	< 5E-12

Light coupling Technology

- Light Peak example, Intel technology delivers high bandwidth starting at 10 Gb/s to mainstream computing and consumer electronics
- Lens/Prism : precision PEI molding ..

Radiation damage to PEI coupling Lens

- The light coupler cap

Spherical-aberration free Plano-Convex Hyperbolic Lens Material: PEI (polyetherimide), as for the TOSA/ROSA tip optical quality surface

Deterioration by Total-Ionizing-Dose

Irradiated with Co⁶⁰ Gamma ray at INER Taiwan flux: 3.5 kGy/hr, total: **117 kGy** → NO LOSS !!

for light transmission within the 2% systematic error

Internal structure of the FOT MMC3 series proc

muRata epoxy lenses

Non-Ionizing Energy Loss to VCSEL, COTS IC

- Proton Irradiation

INER 30 MeV proton beam flux of $2x10^{12}$ p/cm²s, to a total $1.2x10^{14}$ equivalent to $4.8x10^{14}$ n(1MeV)/cm²s

- Beam profile

Strip and pad chambers for beam profile strip pitch 1 mm

Irradiation measurement

FOCI module DC biased no signal input, VCSEL online monitored for mid-level DC light

- VCSEL light degradation
- Optical IC function

Optical driver, USB-3, 5 Gbps

VCSEL/PIN:

- 850 nm bare die,
- 4.8 Gb/s or 10 Gb/s
- >0 dBm (1mW)

Optical IC:

- VIA Labs V0510,
- TSMC 90nm technology
- USB-3 protocol, ~60 mW,
- 4.8 Gb/s TX/RX driver

BG: Band Gap Reference

LDO: Low Drop Out voltage regulator

NIEL damage to VCSEL, Optical I

VCSEL degradation

- VO510 DC biased, (1.5 V to TX driver)
- Annealing during irradiation
- Linear loss to fluence
- → VECEL degraded to 80% of the original after 1x10¹⁴ p(30 MeV)/cm² consistent with bare VCSEL tests

- Single Event effect to Optical IC

- Single Event Effect = 3x10⁻³ Hz @Beam flux = 3.4x10⁹ /cm²s to controller circuits, observed by VCSEL DC light level hopping
- Fatal damage to Optical IC after 1.2x10¹⁴ p(30 MeV)/cm²

Configuration corrupted after irradiation

LANSCE neutron test

- Beam profile similar to ATLAS
- USB transceiver in Bit-Err-Rate Straitix II GX, PRBS 2⁷-1 bit pattern TX path, RX path tested separately

neutron flux 2.9×10^5 n/cm²s over 1.5 days to 3.8×10^{10} n/cm²

TX: 0 error, upper limit 1.0×10⁻¹⁰ cm²/ch (95% CL)

RX: 11 errors SEE cross section 2.9×10⁻¹⁰ cm²/ch

TW >10Gbps fiber-optics for collider experiments

ATLAS P1 production, LAr, Muon NSW
 Prototyping upto 4TX-4RX 25Gbps

ATLAS LAr MTX, Phase-I upgrade

- 850 nm TOSA/ROSA, LC fiber coupling
- LOCId lazer driver of .25um SOS process, designed for 8 Gbps
- Customized latch to reduce thickness

10 Gbps TX eye diagram, qualified

ATLAS LAr MTX, AS produciton, 2019 delivered

- ~ 5k transceivers produced by AS
 TW opto-electronic companies: 光環,千才,修研,柏承
- Quality Assurance, Quality Contract at AS: every channel measured for Chip test, TOSA L-I, eye-diagram, Bit-Error-Rate, Burn-in eye-diagram parameters well within specification

AS+SMU+前鼎 25 Gbps Transmitter

2.500

wid12_wid12

vdd12

OUTN

OUTP

14 OUT

- 0.500

15 4.000

0.320 TYP

- 25 Gbps components, PCB, connectors
- Driver, LOCId65, TSMC 65nm

AS+SMU+前鼎 QTRx Transceiver

- 4TX+4RX, tested @10G, will do 25 Gbps
- VCSEL, PD, PCB all 25 Gbps qualified
- Driver, QLDD, QTIA, TSMC 65nm

QTRx	QLDD	QTIA			
Data rate	10 Gbps 2.56 Gbps 10 G				
Power supply	1.2 V and 2.5 V				
Sensitivity (BER =1E-12)	80 mV	-17 dBm	-8 dBm		
Rise /fall time	37 ps	40 ps	50 ps		
Total jitter (BER =1E-12)	-	38.5 ps	52.4 ps		
Power consumption /ch	124 mW	120 mW with CP			

TX@10Gbps

RX@10Gbps

ECFA 2014, P. Moreira

The CERN GBT chipsets

GBTIA:

- 4.8 Gb/s Transimpedance Amplifier
- Amplifies the weak photo-current detected by the PIN diode

GBLD:

- 4.8 Gb/s Laser Driver
- Modulates laser current to achieve electro-optical conversion

GBTX:

- 4.8 Gb/s Transceiver
- Manages the communications between the counting room and the frontend modules

GBT – SCA

- Slow Control Adapter
- Experiment control and environment monitoring

GBTIA

GBT – SCA

GBTX

TWEPP2021, C. Soos

The CERN Phase-II VTRx+

- CERN Versatile Link+ group → one module for all
- 10x20 mm² height 2.5mm, 4.5mm
- 4TX+1RX, 10Gbps TX, 2.56 Gbps RX
- VCSEL array laser driver LQD, TSMC 65nm
- Optical Receiver GBTIA TSMC 65nm
- production 65K pcs
- Lens is the TW Orange-tek

Orange-tek OT-12, OT-13

Action items

- NSC proposal, fiber-optics for EIC, submit this winter
- Join EIC, DAQ and sub-det group on opto-electronics
- INER revise 30 MeV proton NIEL facility beam target, beam profie calibration
- upon TW EIC approval, collaborate with US groups on **opto-ASICs** and data-link protocal

