

"Introduction" to Quantum Materials Group

温昱傑、柯忠廷 中央研究院物理研究所

Jul. 7th 2022

Who We are?

李偉立

--

What Do We Do?

Solid State Physics

Condensed Matter Physics

Quantum Materials Research

Quantum Materials Study

Quantum Materials Applications

The Prehistoric Age

The Stone Age

The Bronze Age

越王勾踐劍 吳王夫差矛 China, 770~476 BC _{OCNA}

The Iron Age

Iron dagger c.650BC © British Museum

Viktor Vasnetsov

Impact to Our Life

. ...

Transistor by Shockley, Brattain & Bardeen

ron

TEMBER - 1948

CCD Sensor W.S. Boyle & G.E. Smith

Nobel Prize in 2009

Magnetic Storage A. Fert & P. Grünberg

Jack Kilby

IC

Nobel Prize in 2000

Blue LED Akasaki, Amano & Nakamura Nobel Prize in 1956

Liquid crystal de Gennes

Nobel Prize in 2007

Nobel Prize in 2014

Nobel Prize in 1991

Periodic Table of Elements

Arranged by atomic weight Dmitri Mendeleev in 1869

Periodic Table of Elements, 2016

1 Hydrogen 1.008																				2 He Helium 4.003
3 Li Lithium 6.941	4 Bee Beryllium 9.012												5	B Boron 10.811	6 C Carbon 12.011	7 Nitro 14.0	J gen 07	0 Oxygen 15.999	9 Fluorine 18.998	10 Ne Neon 20.180
11 Na Sodium 22.990	12 Magnesium 24.305												13 A	AI uminum 26.982	14 Silicon 28.086	15 Phospit	horus	6 Sulfur 32.066	17 Cl Chlorine 35.453	18 Argon 39,948
19 K Potassium 39.098	20 Ca Calcium 40.078	21 Scandium 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Manganese 54.938	26 Fe Iron 55.845	27 Cobalit 58.933	28 28 Ni 3 58	Ni ickel 693	29 Cu Copper 63.546	30 Z 21 65	n .38	Ga Sallium 59.723	32 Germanium 72.631	33 A Arse 74.9	S nic 22	4 See Selenium 78.972	35 Br Bromine 79.904	36 Krypton 84.798
37 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Molybdenum 95.95	43 Tc Technetium 98.907	44 Ruthenium 101.07	45 Rhodiu 102.90	1 1 1 1 1 1 1 1 1 1 1 1 1 1	dium 6.42	47 Ag Silver 107.868	48 C Cadr 112	d nium .411	In Indium 14.818	50 Sn 118.711	51 S Antim 121.3	b nony 760	2 Tellurium 127.6	53 Iodine 126.904	54 Xeon 131.294
55 CS Cesium 132.905	56 Ba Barium 137.328	57-71	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 Osmium 190.23	77 Ir Iridium 192.21	m Plat 17 195	Pt tinum 5.085	79 Au Gold 196.967	80 Mer 200	81 S92	TI hallium 04.383	82 Pb Lead 207.2	83 Bism 208.5	uth 980	4 Po Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Francium 223.020	88 Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 HS Hassium [269]	109 Meitneri [268]	t jum 110 Darms [2	DS stadtium 269]	111 Rg Roentgeniur [272]	n 112 Coper [2	nicium 77]	3 Nh Ihonium Iknown	114 Fl Flerovium [289]	115 Mosco unkne	IC ovium own	16 LV vermorium [298]	117 TS Tennessine unknown	118 Oganesson unknown
		57 Lanth 138	anum Cer 140	Se Prase	Pr eodymium 40,908	dymium 4,242 14	ethium 4.913	2 Sm 5amarium 150.36	63 Eu Europium 151,964	64 Gadol	d inium .25	Tb Trebium	66 Dysprosiun 162,500	67	lo mium 1.930	Erbium	69 Tm Thulium 168,934	70 Y Ytter 173	bium .055	LU utetium 174.967
		89 Acti 227	90 028 90 T The 232	h rium 2.038	Pa tactinium 31.036 23	93 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Signature Signat	4 Pu Plutonium 244.064	95 Americium 243.061	96 Cur 247.	97 um 070	Bk erkelium 247.070	98 Cf Californium 251.080	99 Einst [2	S einium 54]	00 Fm Fermium 257.095	101 Mendelevia 258.1	um 102 Nobe 259	O elium .101)3 Lr wrencium [262]

Topological Quantum Matters

Quantum Hall effect

"Theoretical discoveries of topological phase transitions and topological phases of matter".

Klaus von Klitzing

Nobel Prize, 1985

David J. Thouless

F. Duncan M. Haldane

J. Michael Kosterlitz

Nobel Prize, 2016

"Periodic Table" of Topological Materials

Classification of topological insulators and superconductors as a function of spatial dimension d and symmetry class:

Symmetry class						Dim	ensior	ı					
Cartan	0	1	2	3	4	5	6	7	8	9	10	11	
Complex case:				ζΗΕ									
А	\mathbb{Z}	0	(\mathbb{Z})	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	
AIII	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	
Real case:			p±ip	SC	B-3⊦ ∕1	le							
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2		0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
CII	0	$2\mathbb{Z}$	$\bigcup_{i=1}^{n}$	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	
		OSHE		3	d-TI		New J	ournal	of Phy	vsics 1	2,065	010 (2	010)

Development of New Quantum Materials

1 H Hydrogen Labe																				2 He Itelue K000
3 Lithum 6.941	4 Be Beryllium 9.012												5	B Ioran 0.811	6 Cathon 13.ML	7 Nitroper 13.007	8 Orm	9	F fluorine 18.998	10 New 20.100
11 Na Solarn 22.910	12 Magnesium 24.305												13		14 Si Sticon 28.086	15 P Presentor No. 974	16 5 107		CI Chlorine 35:453	18 Argan 38.048
19 K Pitaisum 31.013	20 Ca Caldum 40.078	21 Sc Scandium 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	24 Cr Chromiur 51.996	n 25 Mangares 54,938	e 26 F	e 27 6 6 6 6 6 6 5 8 6 5 8	CO obalt 8.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Z 20 65		Ga alturn 9.723	32 Germanium 72.631	33 As Arsenic 74.922	34 S	8 440 72	Br Bromine 79:904	36 Kr Fryntiae 86.798
37 Rb Rds.turn 85.888	38 Strontium 87,62	39 Y Yttrium 88.906	40 Zr Dirconium 91.224	41 Nb Nicobium 92.906	42 Molybdenu 95.95	am 43 TC Technedur 98.907	n 44 Ruthe 101	u nium .07 45 F Rh 10	Rh odum 2.906	46 Pd Palladium 106.42	47 Ag silver 107.868	48 C cadr 112			50 Sn 116.711	51 Sb Antimon 121.760	y 52 Tellur 127	e lum lé	3 Iodine 126.904	54 Xe 381000 1111294
55 Cs (cellare 152,495	56 Ba Narium 137.328	57-71	72 Hf Hafnium 178.49	73 Tantalum 180.948	74 W Tungster 183.84	75 Re Rhenium 186.207	76 0 0 0 190	77 S Jum Iri 23	lr dum 2.217	78 Pt Platinum 195.085	79 Au Geld 196.967	80 H Mer 200	81 (UIY) 1.592	TI selices Massi	82 Pb Lead 207.2	83 Bi Domuth 208.566	84 Polos (208.)	0 ium 982]	At Astailine 209.987	Rn Ration 222 018
87 Francure 222.025	88 Radium 226,025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborpu [266]	m 107 Bh Bohrium [264]	108 Hass [26	S Ment	At prenium 268]	110 Ds Darmstadtium [269]	111 Rg Roentgenic [272]	112 Coper [2	în Inicium 277)	Nh krown	114 Fl Perovium [299]	115 Morener	116 Liverin 225		17 TS ennelsine unknown	118 Opportunity
		57 L Lanti 138	a 58	Ce hum hum	9 Pr 140.908	50 6 Nd Necodymium 144,242	1 Pm 144.913	62 Sm Samarium 150.36	63 Europi 151.9	4 64 64 64	id statium 7.25	S Tb Terbium	66 Dyspresium 162,500	67 H Holm 164.7	0 68 930 10	Er ritum	69 Tm Thulium 168,934	70 Yb Ttterbian 173.055	71 L Lute 174	U Rum 1.967
		89 A	AC tolum 7.028	h Norm 2018	Pa otactinium 231,036	92 U Uranium 238.029	3 Np Fegturium 237.018	94 Pu Mutonium 244.064	95 Ann Annero 243.0	96 C C C C C C C C	m num 7.070	7 Bk Berkatum 247.070	98 Cf Californium 251.080	99 Englise 125	S Fritam	- m mmbum 57.095	101 Md Acerditievium 258.1	102 No Nethelius 259 101		.r arcium 621

							d						
Cartan	0	1	2	3	4	5	6	7	8	9	10	11	
Complex case:													
А	\mathbb{Z}	0											
AIII	0	\mathbb{Z}	•••										
Real case:													
AI	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	
BDI	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	
D	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	
DIII	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	
AII	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	
CII	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	
С	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	0	
CI	0	0	0	$2\mathbb{Z}$	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	$2\mathbb{Z}$	

Complex Phases of Quantum Matters

Electrons in Real Materials

$$-\frac{\hbar^2}{2m}\sum_i \nabla_i^2 \Psi(\vec{r_1}, \vec{r_2}, t) - \sum_{i,j} \frac{Ze^2}{\left|\vec{r_i} - \vec{R_j}\right|} \Psi(\vec{r_1}, \vec{r_2}, \dots, t) + \frac{1}{2}\sum_{i,j} \frac{e^2}{\left|\vec{r_i} - \vec{r_j}\right|} \Psi(\vec{r_1}, \vec{r_2}, \dots, t) = i\hbar \frac{\partial}{\partial t} \Psi(\vec{r_1}, \vec{r_2}, \dots, t)$$

Nobel Prize in 1933

Electrons in Real Materials

$$-\frac{\hbar^2}{2m}\sum_i \nabla_i^2 \Psi(\vec{r_1}, \vec{r_2}, t) - \sum_{i,j} \frac{Ze^2}{\left|\vec{r_i} - \vec{R_j}\right|} \Psi(\vec{r_1}, \vec{r_2}, \dots, t) + \frac{1}{2}\sum_{i,j} \frac{e^2}{\left|\vec{r_i} - \vec{r_j}\right|} \Psi(\vec{r_1}, \vec{r_2}, \dots, t) = i\hbar \frac{\partial}{\partial t} \Psi(\vec{r_1}, \vec{r_2}, \dots, t)$$

Quantum Material Studies in IoP/AS

High Tc Superconductivity

Topological Materials

Oxides Interface

Theory

葉崇傑、林新

Material growth

吴茂昆、 Raman Sankar、歐敏男

Material Characterization

李尚凡、黃英碩、林宮玄、張嘉升、莊天明、李偉立、蘇維彬、楊志文、 胡宇光、溫昱傑、陳洋元、柯忠廷

Quantum Material Studies in IoP/AS

Quantum Material Applications in IoP/AS

Nanotechnology Quantum computer 5.92 5.91 5.90 equency (GHz) 2.5 88 2.5 2.8 2.5 -51 (dBm) -68 -85 5.87 Dress d state 5.86 5.85 -30 -20 -10 -80 -70 -60 -50 -40 Power (dBm)

Lithium-ion battery

Spin/magnetoresistivity Ram

led by 陳啟東、陳洋元、柯忠廷、吳茂昆、李尚凡

Topological chiral crystals with the longest surface Fermi arcs

In a recent collaboration with Prof. Hasan's experimental group at Princeton University, our predictions of the longest possible surface Fermi arcs on the surface of chiral crystals RhSi and CoSi are confirmed by the angle-resolved photoemission experiments.

CoSi E_E – 25 meV

а

Sanchez, Belopolski, Cochran, Xu, Yin, Chang, Xie, Manna, Süß, Huang, Alidoust, Multer, Zhang, Shumiya, Wang, Wang, Chang, Felser, Xu, Jia, Lin & Hasan, *Nature* **567**, 500 (2019).

High Tc Superconductors

Understanding the Material Origin for Superconductivity in K-FeSe

Material quenched from 650C shows negligible lattice distortion — no superconductivity Material quenched from 790C shows high lattice distortion –with high volume superconductivity

X-ray diffraction patterns of KFeSe superconductor

Based on high temperature structural studies:

- 1. There are two Fe sites in FeSe; the Fe-16i (occupied) and Fe-4d (empty) sites
- 2. Its parent phase is a Mott insulator due to the presence of Fe-vacancy order
- 3. Extra Fe-atom or high temperature annealing of FeSe lead to occupation of Fe-atom in Fe-4d empty sites and cause distortion of lattice
- 4. More disordered occupation of Fe-atoms in Fe-4d sites introduces more carriers to close the insulating gap, and the presence of both metallic and semiconducting phases lead to superconductivity

Novel Quantum Materials and Single Crystal Growth

In Dr. Raman Sankar's Laboratory, We study the fundamental properties of single crystals such as "Dirac Semimetals, Surface Topological studies, Topological Insulators, Topological Crystalline Insulators, High Tc superconductors, Weyl Semi-metals, 2D materials, Thermoelectric materials, etc.,".

Raman Sankar

Novel Quantum Materials and Single Crystal Growth

In Dr. Raman Sankar's Laboratory, We study the fundamental properties of single crystals such as "Dirac Semimetals, Surface Topological studies, Topological Insulators, Topological Crystalline Insulators, High Tc superconductors, Weyl Semi-metals, 2D materials, Thermoelectric materials, etc.,".

Raman Sankar

Phys. Rev. Research 2, 013311 (2020)

0.00

-2

 $\mu_0 H(T)$

Magnetotransport study in quantum materials

李偉立 Wei-Li Lee

Full electric field tuning of thermoelectric power in Dual-Gated Bilayer Graphene

2D microcrystal dry transfer system

Lifshitz

ر الم

20

-2.5

-2.0

 $V_{ta}(V)$

transitions

Quantum anomalous Hall effect (QAHE) in ferromagnetic topological insulator

Physical Review Research 3, 033160 (2021)

Characterization of Quantum Materials in IoP/AS

Surface and Nanoscience Group

Direct visualization/manipulation of physical properties of materials or nanostructruces with atomic resolution.

http://www.phys.sinica.edu.tw/~nano/

© Gary Larson

Scanning Tunneling Microscope (STM)

Atomic Resolution Energy Resolved Images, LDOS(r,E)

Our Resolution and Stability

STM Tip on Piezo Scanner Taipei 101 509m X 6mm

@Wikipedia

 $0.1 \text{pm}/6 \text{mm} \rightarrow \sim 8 \text{nm}/509 \text{m!}$

Spectroscopic Imaging Lab

利用掃描穿隧顯微鏡(Scanning Tunneling Microscope, STM) 在原子尺度下觀 察新穎材料的表面結構並研究其電子能帶結構,結合理論計算來瞭解其物性 的背後物理機制。我們目前主要研究課題為拓樸超導、高溫超導體、拓樸半 金屬等材料。

http://www.phys.sinica.edu.tw/~chuangtm/

Superconducting Topological Surface States in PbTaSe2

S.-Y. Guan & P.-J. Chen et al., Sci. Adv. 2, e1600894 (2016)

Surface-dependent STM Study on Dirac nodal line semimetal ZrSiS

Our surface-dependent STM results support the importance of Zr-d orbitals on the calculated band structures. It also shows that the sp3 orbital hybridization for Si is the key controlling factor for the non-symmorphic symmetry of ZrSiS. - Su *et al.*, New J. Phys. 20, 103025

Geometric quenching of orbital pair breaking in a single crystalline superconducting nanomesh network in collaboration with C.-K. Shih

We show the superconductivity pair breaking can be significantly suppressed by nanoscale engineering and opens new strategies to optimize superconducting quantum devices.

Nam et al., Nature Communications 9, 5431

Observing quantum trapping through lifetimes of field emission resonant electrons

Lifetime modulation with electric field on MoS₂

Due to following mechanisms:

1. two-electron tunneling through exchange interaction occurs in FER.

2. One of electrons relaxes first through light emission and its spin flips due to Hund's rule.

well.

3. Because of Pauli exclusion principle, another electron cannot emit light while the relaxed electron remains trapped in the

Nanoscale Advances **2**, 5848 (2020). Physical Review B **105**, 195411 (2022)

Visualizing Graphene Ripples at the Nanometer Scale with Electron Diffraction

FIM image of a single atom tip

D

Nature Communications 8, 14440 (2017)

Divergent Beam Electron Diffraction

Detector

Sample

Single atom tip

Instrumentation Development

High Speed AFM in Liquid resonance mode AFM (a) Tapping LR TR Mica Duplex DNA AZ 1.2 nm) ^z a(C) (a) 0.6 02 ↔ 3.84a scan direction ----(b)

High-sensitivity imaging with lateral

Nanoscale 8, 18421 (2016) Nanotechnology 21, 065710 (2010)

Optical Physics Lab

Light-matter interactions in Weyl semimetals (WSMs)

Wen group focuses on nonlinear optical spectroscopic research on Weyl semimetals in the THz and mid-infrared ranges, where the optical transition of an electron within a single Weyl cone occurs.

New Physics

- Quantization of circular photogalvanic effect
- Berry-phase-induced giant photovoltaic effect
- Nonlinear Hall effect at THz

Unveiling Microscopic Structures and Charging of Water Interfaces by Optical Sum-Frequency Vibrational Spectroscopy

Wen et. al., Phys. Rev. Lett. (2016) Dalstein and Wen et. al., J. Phys. Chem. Lett (2019) Chiang and Wen et. al., J. Phys. Chem. Lett (2020) Spectra of **bonded interface layer** at lipid/water interface

Spectra of electric diffuse layer

Deduced microscopic interface structure for varying charge state of lipid headgroup

Deprotonated state

Protonated state

Quantification of surface ion density and surface pH (pOH)

中研院物理所雷射光譜實驗室

實驗室主持人: 林宮玄

超快雷射時間解析光譜 飛秒雷射顯微鏡系統 材料高頻(GHz-THz)音波特性 奈米材料熱傳性質與行為

Quantum Materials Applications

熱電、磁性、奈米科技與量子技術

陳洋元

歐敏男

(Sb,Bi)2Te3 奈米線

SnSe 單晶

Thermoelectric device 熱電發電晶片

磁振子-自旋波研究 零外加磁場下的寬頻自旋 波源

- 以奈米等級渦旋核產生自旋波,注入並在磁通道中傳遞

自旋波可用於資訊傳遞,且能量耗散可以相當微弱。自旋波的量子稱為磁振子 。磁振子迴路中自旋波的激發與傳遞是目前自旋電子學應用的重要課題。關於 磁性材料中自旋波的研究成果,刊登在 Nano Letters。該實驗證明高達15GHz, 波長僅80奈米的自旋波,可以在零外加磁場下,由奈米尺度的鎳鐵磁盤渦漩核 心受微波激發而產生,進而耦合至奈米寬的磁區壁中進行傳遞。更有趣的自旋 波與磁區壁、skyrmion 的交互作用目前仍依賴模擬,實驗困難有待克服。 Nano Lett. 2020, **20**, 3140–3146

https://doi.org/10.1021/acs.nanolett.9b05133

二維磁性材料 性質研究

探討磁性拓樸材料 MnBi₂Te₄ 在二維極限下的自旋漲落、磁振子行為。在兩個單 元厚度樣品中,成功觀察到基態在外加磁場之下,從反鐵磁轉變為鐵磁狀態的磁 振子特性。模型分析得到此結構中的自旋波能隙、層間交換耦合能等各項物理參 數。在一單元厚度樣品中則無法觀察到訊號,可歸因於極強的量子漲落。該研究 成果發表於 Nature Communications。

Nature Communications 13, 2527 (2022).

期刊連結: https://doi.org/10.1038/s41467-022-29996-w

量子電子實驗室

Microchip for Covid detection

Polymer-free patterning of graphene at sub-10nm scale

Small 10, 4778 (2014)

Superconducting qubit device

CPW

Ξ 100.00μ

Chip size 5 x 5 mm²

. . .

Al ground plane

XY

Al/Al₂O₃/Al junction 300 x 80 nm²

X-mon qubit

Al ground plane

XY-gate

dilution fridge

the 10mK plate

PLAS

Et

量子元件與傳輸實驗室

Using hybrid material in 2D to develop topological superconductivity

Control of supercurrent

Internal Joint Effort

Supporting facility

Nanofabrication in cleanroom

Precision machine shop

He liquefaction facility

Magnet & physical properties measurement

Structural characterization facility

Optical spectroscopy facility in progress.