# Is right-handed current contribution to <br> $\bar{B} \rightarrow X_{u} l \nu$ decays corrected by non-trivial topology in QCD vacuum? 

Hiroyuki Umeeda (Academia Sinica)

$$
\begin{aligned}
& \text { arXiv:2208.11896 [hep-ph] } \\
& \text { TQCD 3rd meeting }
\end{aligned}
$$

Sep. 16 2022, Academia Sinica

## Introduction

Semi-leptonic $\bar{B}$ decays $\Longrightarrow$ Determinations of $\left|V_{c b}\right|,\left|V_{u b}\right|$

$$
-\mathcal{L}=\frac{g}{\sqrt{2}}\left(V_{c b} \bar{c}_{L} \gamma^{\mu} b_{L}+V_{u b} \bar{u}_{L} \gamma^{\mu} b_{L}\right) W_{\mu}+\text { H.c. }
$$

(1) Exclusive processes

Theory: difficult

$$
\bar{B} \rightarrow D^{(*)} l \nu, \bar{B} \rightarrow \pi l \nu, \bar{B} \rightarrow \rho l \mu, \text { etc. }
$$

(2) Inclusive processes $\stackrel{?}{=}$ sum of exclusive decays Theory: easy? (quark-hadron duality)
Hadronic final states are not specified.
Operator product expansion (OPE): $\Gamma \propto m_{b}^{5}\left(1+\frac{c_{2}}{m_{b}^{2}}+\frac{c_{3}}{m_{b}^{3}}+\cdots\right)$
$1 / m_{b}$ : expansion parameter

## Duality violation A source of uncertainty in (2)

## Determinations of $\left|V_{c b}\right|$ and $\left|V_{u b}\right|$



Inclusive vs Exclusive

$$
\left\{\begin{array}{l}
\left|V_{c b}\right|: 3.3 \sigma \\
\left|V_{u b}\right|: 3.3 \sigma
\end{array}\right.
$$

Implication of new physics?
Crivellin, Pokorski [1407.1320]

- This interpretation is disfavored, shown in the absence of the light right-handed neutrino.
$\checkmark$ Theoretical uncertainty is underestimated?
- Duality violation is hard to quantify.


## Inclusive processes



## Possible sources of errors

O Ultimate accuracy of the OPE is limited due to divergences in perturbative series. (1) Proliferation of Feynman diagrams (2) Renormalons $\mathcal{V}(3)$ power series

## Approaches to duality violation

## (1) Resonance-based model

O The large $-N_{c}$ limit and linear Regge tragectory are considered as a starting point of discussion.
Pros: Theoretical predictions are rigorous.
Cons: This is mostly a toy model of QCD.
$\boldsymbol{V}$ (2) Instanton-based model [9605465, 2208.11896]
O This method takes account of a (fixed-sized) background instanton, more or less as an orientational direction to capture contributions related to the factorial divergence in power corrections.
Pros: Some realistic contributions could be examined (not a toy model).
Cons: Detail of the QCD vacuum is involved in a non-trivial way.
(3) Lattice QCD [2005.13730, 2203.11762]

O Reconstruction of the spectral function is considered for inclusive $\bar{B}$ decays.
Pros: It is based on ab initio evaluation of the hadronic correlator.
Cons: Specific duality-violating components are suppressed in the Euclid space.

## Fourmlas for inclusive width

$$
\begin{gathered}
\begin{array}{c}
\text { Partonic decay: } \\
b \rightarrow u l \nu
\end{array} \\
\mathscr{H}_{\text {eff }}=\frac{4 G_{F}}{\sqrt{2}} V_{u b}\left[c_{\mathrm{L}}\left(\bar{u} \gamma^{\mu} P_{\mathrm{L}} b\right)+c_{\mathrm{R}} \frac{\left.\left(\bar{u} \gamma^{\mu} P_{\mathrm{R}} b\right)\right]}{\widehat{L}^{2}}\right] \bar{\gamma}_{\mu} P_{\mathrm{L}} \nu
\end{gathered}
$$

Four contributions: $(\mathrm{X}, \mathrm{Y})=(\mathrm{L}, \mathrm{L}),(\mathrm{L}, \mathrm{R}),(\mathrm{R}, \mathrm{L}),(\mathrm{R}, \mathrm{R})$

$$
\begin{cases}\Gamma_{\mathrm{XY}}=-16 G_{F}^{2}\left|V_{u b}\right|^{2} \operatorname{Im}\left(T_{\mathrm{XY}}^{\mu} L_{\mu \nu}\right) & \\ T_{\mathrm{XY}}^{\mu \nu}=-i \mathrm{~d}^{4} x e^{-i q \cdot x}<\bar{B}_{v}\left|J_{\mathrm{X}}^{\mu \mu}(x) J_{\mathrm{Y}}^{\nu}(0)\right| \bar{B}_{v}> & \text { Hadronic tensor } \\ L_{\mu \nu}=-\frac{1}{2 \pi^{4}+x^{8}}\left(2 x_{\mu} x_{\nu}-x^{2} g_{\mu \nu}\right) & \text { Leptonic tensor }\end{cases}
$$

Width: $\Gamma=\frac{c_{\mathrm{L}}^{2} \Gamma_{\mathrm{LL}}+c_{\mathrm{L}} c_{\mathrm{R}} \Gamma_{\mathrm{LR}}+c_{\mathrm{R}} c_{\mathrm{L}} \Gamma_{\mathrm{RL}}+c_{\mathrm{R}}^{2} \Gamma_{\mathrm{RR}}}{\left\llcorner_{\text {Discussed in the remaining part of this talk }}\right.}$
For perturbative contributions, LL is chirally-favored while LR is chirally-suppressed

## Duality violation in hadronic tensor

$$
\frac{\underbrace{u}_{b} \text { Hadronic tensor: } T_{\mu \nu}=\int \mathrm{d}^{4} x e^{i Q x} S(x) \times(\cdots) \quad S(x)=-\frac{\hat{x}}{2 \pi^{2}\left(x^{4}\right)}}{f(Q)=\int_{-\infty}^{+\infty} \mathrm{d} x \frac{e^{i Q x}}{x^{2}+\rho^{2}} \quad \text { Difference: pole at } x^{2}=-\rho^{2}, Q>0}
$$

(1) Exact evalution: $f_{1}(Q)=\frac{\pi}{\rho} e^{-Q \rho}$
(2) Short-distance expansion at $x^{2}=0$ first (OPE): $f_{2}(Q)=0$

$$
\frac{1}{x^{2}+\rho^{2}}=\frac{1}{\rho^{2}}\left[1-\frac{x^{2}}{\rho^{2}}+\left(\frac{x^{2}}{\rho^{2}}\right)^{2}-\cdots\right]
$$

$\rightarrow$ An error is induced in (2), if there are poles at $x^{2}=-\rho^{2}$.

## Duality violation in hadronic tensor

$$
\frac{\int_{b}^{s^{2}} \text { Hadronic tensor: } T_{\mu \nu}=\int \mathrm{d}^{4} x e^{i Q x} S(x) \times(\cdots) \quad S(x)=-\frac{\hat{x}}{2 \pi^{2} x^{4}}}{f(Q)=\int_{-\infty}^{+\infty} \mathrm{d} x \frac{e^{i Q x}}{\left(x^{2}\right)+\rho^{2}} \quad \text { Difference: pole at } x^{2}=-\frac{\rho, Q>0}{\rho^{2}}}
$$

(1) Exact evalution: $f_{1}(Q)=\frac{\pi}{\rho} e^{-Q \rho}$
(2) Short-distance expansion at $x^{2}=0$ first (OPE): $f_{2}(Q)=0$

$$
\frac{1}{x^{2}+\rho^{2}}=\frac{1}{\rho^{2}}\left[1-\frac{x^{2}}{\rho^{2}}+\left(\frac{x^{2}}{\rho^{2}}\right)^{2}-\cdots\right]
$$

$\rightarrow$ An error is induced in (2), if there are poles at $x^{2}=-\rho^{2}$.
An example of the pole: instanton $A_{\mu}^{a}=\bar{\eta}_{\mu \mu \nu} \frac{(x-z)_{\nu} \rho^{2}}{(x-z)^{2}\left[(x-z)^{2}+\rho^{2}\right]} \quad \begin{gathered}z_{\mu} \\ \rho\end{gathered}:$ instanton center propagator: $S(x, y, z)=\sum_{n=0}^{\infty} \frac{\psi_{0}\left(x, \phi_{0}(x)\right.}{\lambda_{n}-m_{u}}=S_{\text {um }}+S_{\text {uem }}+\mathcal{O}\left(m_{u}\right)$

non-zero mode: $\left.S_{\mathrm{nzm}}=-\frac{\Delta}{2 \pi^{2} \Delta^{4}} \frac{\sqrt{\hat{x}^{2} \hat{y}^{2}}}{\sqrt{\hat{x}^{2}}+(\varrho) \sqrt{\tilde{y}^{2}}+\varnothing}\left[1+\frac{\rho^{2}}{\hat{x}^{2} \tilde{y}^{2}}\left(\tau^{-} \cdot \hat{x}\right)\left(\tau^{+} \cdot \hat{y}\right)\right]-\frac{i}{4 \pi^{2} \hat{x}^{2} \hat{y}^{2} \Delta^{2}} \frac{\sqrt{\hat{x}^{2} \tilde{y}^{2}}}{\sqrt{\hat{x}^{2}}+\left(\varrho^{2} \sqrt{y^{2}}+\left(\varrho^{2}\right.\right.}\right)$

$$
\begin{array}{rll}
\times\left(\tau^{-} \cdot \tilde{x}\right)\left[\begin{array}{c}
\rho^{2} \\
\tilde{x}^{2}+\left(\rho^{2}\right)
\end{array} t^{+}\left(\tau^{-} \cdot \Delta\right) P_{\mathrm{R}}+\frac{\rho^{2}}{\tilde{y}^{2}+\left(\rho^{2}\right)}\left(\tau^{+} \cdot \Delta\right) \dot{\gamma}^{-} P_{\mathrm{L}}\right. \\
-6-6- & \Delta=x-y \\
\text { Brown, Carlitz, Creamer, Lee 1978 } & \tilde{y}), & \tilde{y}=x-z \\
& \tilde{y}=y-z
\end{array}
$$

## Single instanton approximation (SIA)

O Due to the diluteness of the instanton vacuum, the leading contribution arises from the nearest instanton at the short-distance region.
O Multiple instantons effects are taken into account by,

$$
S_{\mathrm{zm}}=-\frac{1}{m_{u}} \psi_{0} \psi_{0}^{\dagger} \rightarrow-\frac{1}{m^{*}} \psi_{0} \psi_{0}^{\dagger} \quad m^{*}: \text { effective mass }
$$

O The pole at $x^{2} \simeq-4 \rho^{2}$ is analytically captured.

This work


Previous work


Chibisov, Dikeman, Shifman and Uraltsev [9605465]
Duality violation is tested for
$\left\{\begin{array}{l}\text { (1) Total width for semileptonic decay }\end{array}\right.$
(2) Lepton energy distribution

## Width for RHC



$$
T_{\mu \nu}=i \int \frac{\mathrm{~d} \rho}{\rho^{5}} d(\rho) \mathrm{d} U \mathrm{~d}^{4} z \mathrm{~d}^{4} x e^{i Q \cdot x}\left\langle\bar{B}_{v}\right| \bar{b}_{v}(x) \gamma_{\mu} P_{\mathrm{L}} S_{\mathrm{zm}}(x, 0, z) \gamma_{\nu} P_{\mathrm{R}} b_{v}(0)\left|\bar{B}_{v}\right\rangle
$$

$$
d(\rho)=\frac{n_{I} \rho^{4}}{2} \rho \delta\left(\rho-\rho_{0}\right) \quad \text { instanton liquid model } \quad \text { Shuryak (1982) } \quad\left\{\begin{array}{c}
\rho_{0}=\frac{1}{3} \mathrm{fm} \\
n_{I}=1 \mathrm{fm}^{-4}
\end{array}\right.
$$

$$
\begin{gathered}
\int_{-\infty}^{+\infty} d x_{4}(\cdots) e^{i Q \cdot x} S_{\mathrm{zm}} \propto \frac{e^{-Q_{4} \bar{x}} f\left(Q_{4}\right) \longrightarrow e^{i Q_{0} \bar{x}} f\left(-i Q_{0}\right)}{\text { Analytic continuation }} \\
Q_{4}=-i Q_{0}
\end{gathered}
$$

The saddle point approximation can be applied to evaluate the other integrals such as the instanton center.

$$
\begin{cases}\text { (1) For total semileptonic width: } & Q_{\mu}=m_{b} v_{\mu} \\ \text { (2) For lepton energy distribution: } & Q_{\mu}=m_{b} v_{\mu}-p_{l}\end{cases}
$$

## Numerical resutls for width

Ratio: $\quad R_{\mathrm{XY}}^{\mathrm{tot}}\left[B \rightarrow X_{u} l \nu\right]=\frac{\tilde{\Gamma}_{\mathrm{XY}}^{\mathrm{I}}}{\Gamma_{\mathrm{XY}}^{\text {pert }}} \quad(\mathrm{X}, \mathrm{Y})=(\mathrm{L}, \mathrm{L}),(\mathrm{L}, \mathrm{R})$
$\left\{\begin{array}{l}\text { RHC } \quad R_{\mathrm{LR}}^{\text {tot }} \simeq+\frac{2}{3} d_{0}\left(\frac{m_{b}^{2}}{m^{*} m_{u}}\right) \frac{96 \pi}{\left(m_{b} \rho_{0}\right)^{8}} \cos \left(2 m_{b} \rho_{0}\right)\end{array}\right.$
$-\mathrm{SM} \quad R_{\mathrm{LL}}^{\mathrm{tot}} \simeq-\frac{2}{3} d_{0} \frac{96 \pi}{\left(m_{b} \rho_{0}\right)^{8}} \frac{\sin \left(2 m b \rho_{0}\right)}{(2)}$

$$
\begin{gathered}
m_{b} \rightarrow m_{c}, \quad m_{u} \rightarrow m_{d} \\
\quad \text { for } D \rightarrow X_{d} l \nu
\end{gathered}
$$

Mass inputs $\left(m_{b}, m^{*}\right)[\mathrm{GeV}](4.18,0.120)(4.78,0.120)(4.18,0.177)(4.78,0.177)$
$\bar{B}$ decays

$$
\left\{\begin{array}{cccccc}
\mathrm{RHC} & R_{\mathrm{LR}}^{\mathrm{tot}\left[\bar{B} \rightarrow X_{u} l \nu\right]} & 2 \times 10^{-2} & 7 \times 10^{-3} & 1 \times 10^{-2} & 5 \times 10^{-3} \\
\mathrm{SM} & R_{\mathrm{LL}}^{\mathrm{tot}\left[\bar{B} \rightarrow X_{u} l \nu\right]} & 2 \times 10^{-7} & 7 \times 10^{-8} & 2 \times 10^{-7} & 7 \times 10^{-8} \\
\hline
\end{array}\right.
$$

Mass inputs $\left(m_{c}, m^{*}\right)[\mathrm{GeV}](1.27,0.120)(1.67,0.120)(1.27,0.177)(1.67,0.177)$
$\left\{\begin{array}{cccccc}\mathrm{RHC} & R_{\mathrm{LR}}^{\text {tot }}\left[D \rightarrow X_{d} l \nu\right] & 7 & 1 & 5 & 1 \\ \mathrm{SM} & R_{\mathrm{LL}}^{\text {tot }}\left[D \rightarrow X_{d} l \nu\right] & 3 \times 10^{-3} & 3 \times 10^{-4} & 3 \times 10^{-3} & 3 \times 10^{-4}\end{array}\right.$

The importance of duality violation for the RHC is higher than that of the SM.

## Numerical results for lepton energy spectra

Ratio: $\quad R_{\mathrm{XY}}\left[B \rightarrow X_{u} l \nu\right]=\frac{\left.(\mathrm{d} \Gamma / \mathrm{d} y)\right|_{\mathrm{XY}} ^{\mathrm{I}}}{\left.(\mathrm{d} \Gamma / \mathrm{d} y)\right|_{\mathrm{XY}} ^{\mathrm{prt}}} \quad(\mathrm{X}, \mathrm{Y})=(\mathrm{L}, \mathrm{L}),(\mathrm{L}, \mathrm{R})$
$y=2 E_{l} / m_{b}$ : dimensionless lepton energy
$\left\{\begin{array}{l}\mathrm{RHC} \quad R_{\mathrm{LR}} \simeq+\frac{2}{3} d_{0} \frac{m_{b}}{m^{*}} \frac{16 \pi}{\left(m_{b} \rho_{0}\right)^{5}} \frac{1}{\left(1-\frac{y}{2}\right)^{2}} \sin \left(2 m_{b} \rho\left(1-\frac{y}{2}\right)\right), 120 \mathrm{MeV} \leq m^{*} \leq 177 \mathrm{MeV}\end{array}\right.$
$\mathrm{SM} \quad R_{\mathrm{LL}} \simeq-\frac{2}{3} d_{0} \frac{48 \pi}{\left(m_{b} \rho_{0}\right)^{5}} \frac{1}{\left(1-\frac{y}{2}\right)^{3}(3-2 y)} \cos \left(2 m_{b} \rho\left(1-\frac{y}{2}\right)\right)$



## Conclusion

O We have studied an instanton-induced correction to $\bar{B} \rightarrow X_{u} l \nu$ decays, finding that the patterns of duality violation depend on the effective operators.

O The zero-mode induced duality violation gives rise to the chirally-favored contribution in the presence of the RHC.

O Within the SIA for the RHC, the duality-violating component of the width is at most $\mathcal{O}\left(10^{-2}\right)$ and $\mathcal{O}(1)$ relative to the chirally-suppressed perturbative contributions in $\bar{B}$ and $D$ decays, respectively.

O As for the lepton energy distributions, the duality violation is maximally $\mathcal{O}(1)$ and $\mathcal{O}(10)$ for $0 \leq y \leq 0.5$ in $\bar{B}$ and $D$ decays, respectively. $\quad y=\frac{2 E_{l}}{m_{b}}$

Backup

## Inclusive determinations of $\left|V_{u b}\right|$

HFLAV2022 Experimental and theoretical errors for $\left|V_{u b}\right|$

|  | BLNP | DGE | GGOU | ADFR | BLL |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input parameters |  |  |  |  |  |
| scheme | SF | $\overline{M S}$ | kinetic | $\overline{M S}$ | $1 S$ |
| Ref. | [598,599] | Ref. [600] | see Sec. 7.2.2 | Ref. [601] | Ref. [581] |
| $m_{b}(\mathrm{GeV})$ | $4.582 \pm 0.026$ | $4.188 \pm 0.043$ | $4.554 \pm 0.018$ | $4.188 \pm 0.043$ | $4.704 \pm 0.029$ |
| $\mu_{\pi}^{2}\left(\mathrm{GeV}^{2}\right)$ | $0.202{ }_{-0.098}^{+0.091}$ | - | $0.464 \pm 0.076$ | - | - |
| Ref. | $\left\|V_{u b}\right\|$ values $\left[10^{-3}\right]$ |  |  |  |  |
| CLEO $E_{e}$ [589] | $4.22 \pm 0.49_{-0.34}^{+0.29}$ | $3.86 \pm 0.45_{-0.27}^{+0.25}$ | $4.23 \pm 0.49_{-0.31}^{+0.22}$ | $3.42 \pm 0.40_{-0.17}^{+0.17}$ | - |
| Belle $M_{X}, q^{2}$ [591] | $4.51 \pm 0.47_{-0.29}^{+0.27}$ | $4.43 \pm 0.47_{-0.21}^{+0.19}$ | $4.52 \pm 0.48_{-0.28}^{+0.25}$ | $3.93 \pm 0.41_{-0.17}^{+0.18}$ | $4.68 \pm 0.49_{-0.30}^{+0.30}$ |
| Belle $E_{e}$ \|590] | $4.93 \pm 0.46_{-0.29}^{+0.26}$ | $4.82 \pm 0.45_{-0.23}^{+0.23}$ | $4.95 \pm 0.46_{-0.21}^{+0.16}$ | $4.48 \pm 0.42_{-0.20}^{+0.20}$ | - |
| BABAR E Ee [585] | $4.41 \pm 0.12_{-0.27}^{+0.27}$ | $3.85 \pm 0.11_{-0.07}^{+0.08}$ | $3.96 \pm 0.10_{-0.17}^{+0.17}$ | - | - |
| $B A B A R E_{e}, s_{\mathrm{h}}^{\text {max }}$ [588] | $4.71 \pm 0.32_{-0.38}^{+0.33}$ | $4.35 \pm 0.29_{-0.30}^{+0.28}$ | - | $3.81 \pm 0.19_{-0.18}^{+0.19}$ |  |
| Belle $E_{\ell}^{B},\left(M_{X}, q^{2}\right)$ fit [593] | $4.05 \pm 0.23_{-0.20}^{+0.18}$ | $4.16 \pm 0.24_{-0.11}^{+0.12}$ | $4.15 \pm 0.24_{-0.09}^{+0.08}$ | $4.05 \pm 0.23_{-0.18}^{+0.18}$ | - |
| BABAR $M_{X}$ [580] | $4.24 \pm 0.19_{-0.25}^{+0.25}$ | $4.47 \pm 0.20_{-0.24}^{+0.19}$ | $4.30 \pm 0.20_{-0.21}^{+0.20}$ | $3.83 \pm 0.18_{-0.19}^{+0.20}$ | - |
| BABAR $M_{X}$ [580] | $4.03 \pm 0.22_{-0.22}^{+0.22}$ | $4.22 \pm 0.23_{-0.27}^{+0.21}$ | $4.10 \pm 0.23_{-0.17}^{+0.16}$ | $3.75 \pm 0.21_{-0.18}^{+0.18}$ | - |
| BABAR $M_{X}, q^{2}$ [580] | $4.32 \pm 0.23_{-0.28}^{+0.26}$ | $4.24 \pm 0.22_{-0.21}^{+0.18}$ | $4.33 \pm 0.23_{-0.27}^{+0.24}$ | $3.75 \pm 0.20_{-0.17}^{+0.17}$ | $4.50 \pm 0.24_{-0.29}^{+0.29}$ |
| BaBar $P_{+}[580]$ | $4.09 \pm 0.25_{-0.25}^{+0.25}$ | $4.17 \pm 0.25_{-0.37}^{+0.28}$ | $4.25 \pm 0.26_{-0.27}^{+0.26}$ | $3.57 \pm 0.22_{-0.18}^{+0.19}$ | - |
| BABAR p $p_{\ell}^{*},\left(M_{X}, q^{2}\right)$ fit [580] | $4.33 \pm 0.24_{-0.21}^{+0.19}$ | $4.45 \pm 0.24_{-0.13}^{+0.12}$ | $4.44 \pm 0.24_{-0.10}^{+0.09}$ | $4.33 \pm 0.24_{-0.19}^{+0.19}$ | - |
| BABAR p $p_{\ell}^{*}$ [580] | $4.34 \pm 0.27_{-0.21}^{+0.20}$ | $4.43 \pm 0.27_{-0.13}^{+0.13}$ | $4.43 \pm 0.27_{-0.11}^{+0.09}$ | $4.28 \pm 0.27_{-0.19}^{+0.19}$ | - |
| Belle $M_{X}, q^{2}{ }^{\text {[592] }}$ | - | - | - | - | $5.01 \pm 0.39_{-0.32}^{+0.32}$ |
| Average | $4.28 \pm 0.13_{-0.21}^{+0.20}$ | $3.93 \pm 0.10_{-0.10}^{+0.09}$ | $4.19 \pm 0.12_{-0.12}^{+0.11}$ | $3.92 \pm 0.12_{-0.12}^{+0.18}$ | $4.62 \pm 0.20_{-0.29}^{+0.29}$ |

Exclusive average: $\left|V_{u b}\right|=(3.51 \pm 0.12) \times 10^{-3}$

## Recent exclusive determinations of $\left|V_{c b}\right|$



2017: Belle published unfolded $B \rightarrow D^{*} l \nu$ data [1702.01521] This enables theorists to perform their own fit.

$$
\left\{\begin{array}{l}
\left|V_{c b}\right|_{\mathrm{CLN}}=(38.2 \pm 1.5) \times 10^{-3} \\
\left|V_{c b}\right|_{\mathrm{BGL}}=\left(41.7_{-2.1}^{+2.0}\right) \times 10^{-3}
\end{array}\right.
$$

Bigi, Gambino and Schacht [1703.06124]
$\Rightarrow$ BGL is consistent with both CLN and inclusive.
2018: New Belle data published [1809.03290]
2019: New BaBar data published [1903.10002]
Both CLN and BGL are deviated from the inclusive value.

Ricciardi [2103.06099]

## Form factor in exclusive $B \rightarrow D^{*}$ decays [2112.13775]






## On universality of effective mass in SIA [0106019]

$$
S(x, y)=\frac{\psi_{0}(x) \psi_{0}^{\dagger}(y)}{i m^{*}}
$$

$m^{*}$ should be universal for two-quark condensate, four-quark condensates, meson correlators, etc.

TABLE I: Quark condensates evaluated in the full instanton ensemble and from the leading-instanton, only.

| condensate | complete calculation | LI |
| :---: | :---: | :---: |
| $\chi_{u u}$ | $(-232 \pm 5 \mathrm{MeV})^{3}$ | $(-198 \pm 1 \mathrm{MeV})^{3}$ |
| $\chi_{u u d d}$ | $(310 \pm 7 \mathrm{MeV})^{6}$ | $(309 \pm 3 \mathrm{MeV})^{6}$ |

An uncertainty is involved for the process where only one zero-mode contributes.
Two-quark condensate: $\chi_{w u}=\left\langle\operatorname{Tr}\left[\sum_{I, J} \psi_{0 I}(x)\left(\frac{1}{T}\right)_{I J} \psi_{0 J}^{\dagger} J^{\prime}(x)\right]\right\rangle$
Four-quark condensate: $\chi_{u u d d}:=\langle 0| \operatorname{Tr}[\bar{u}(x) u(x)] \cdot \operatorname{Tr}[\bar{d}(x) d(x)]|0\rangle=\left\langle[\operatorname{Tr} S(x, x)]^{2}\right\rangle$
Overlap matrix element: $\quad T_{I J}=\int d^{4} z \psi \psi^{\dagger}(z)_{I}(i \phi) \psi(z)_{J}$

## Part larger than whole paradox [9605465]

Total width: $\left.\quad \frac{\Gamma}{\Gamma_{0}}\right|_{\mathrm{LR}} ^{\mathrm{zm}}=-\frac{2}{3} d_{0}\left(\frac{m_{b}}{m^{*}}\right) \frac{192 \pi}{\left(m_{b} \rho_{0}\right)^{8}} \cos \left(2 m_{b} \rho_{0}\right)$
Differential width: $\left.\frac{1}{\Gamma_{0}} \frac{\mathrm{~d} \Gamma}{\mathrm{~d} y}\right|_{\mathrm{LR}} ^{\mathrm{am}}=-\frac{2}{3} d_{0}\left(\frac{m_{b}}{m^{*}}\right) \frac{96 \pi}{\left(m_{b} \rho_{0}\right)^{5}} \frac{y^{2}}{\left(1-\frac{y}{2}\right)^{2}} \sin \left(2 m_{b} \rho_{0}\left(1-\frac{y}{2}\right)\right)$
O Absolute size of the differential width is parametrically larger than the total width by $\sim\left(m_{b} \rho\right)^{3}$.
O The similar behavior has been already found in [9605465] for non-zero mode contribution in the SM.
O In the endpoint region, the semi-classical approximation is not valid per se.

Treatment to obtain the lepton energy distribution
In [9605465]: the dispersion relation is imposed via the OPE-like counterterms.
In this work: the momentum (position) space propagator is used for charged lepton (neutrino) to avoid the endpoint integral.

## Detail of finite distance singularity

$$
f_{1}(Q)=\int_{0}^{\infty} \frac{e^{i Q x}}{x^{2}+\rho^{2}} \mathrm{~d} x \quad f_{1}(Q)+f_{1}(-Q)=\int_{-\infty}^{+\infty} \frac{e^{i Q x}}{x^{2}+\rho^{2}} \mathrm{~d} x
$$

(1) Exact evaluation

## Duality violation

$\left\{\begin{array}{l}f_{1}(+Q)=+\frac{i}{\rho} \sum_{k=0}^{\infty} \frac{(2 k)!}{(Q \rho)^{2 k+1}}+\frac{\pi}{2 \rho} e^{-Q \rho}, \\ f_{1}(-Q)=-\frac{i}{\rho} \sum_{k=0}^{\infty} \frac{(2 k)!}{(Q \rho)^{2 k+1}}+\frac{\pi}{2 \rho} e^{-Q \rho} .\end{array}\right.$

$$
f_{1}(Q)+f_{1}(-Q)=\frac{\pi}{\rho} e^{-|Q| \rho}
$$

(2) Short-distance expansion first (OPE)

$$
\left\{\begin{array}{l}
f_{2}(+Q)=+\frac{i}{\rho} \sum_{k=0}^{\infty} \frac{(2 k)!}{(Q \rho)^{2 k+1}}-\frac{i}{\rho} \sum_{k=0}^{\infty} \frac{\lim _{b \rightarrow \infty} \Gamma(2 k+1,-i b)}{(Q \rho)^{2 k+1}} \\
f_{2}(-Q)=-\frac{i}{\rho} \sum_{k=0}^{\infty} \frac{(2 k)!}{(Q \rho)^{2 k+1}}+\frac{i}{\rho} \sum_{k=0}^{\infty} \frac{\lim _{b \rightarrow \infty} \Gamma(2 k+1,+i b)}{(Q \rho)^{2 k+1}}
\end{array}\right.
$$

$$
f_{2}(Q)+f_{2}(-Q)=0
$$

$\Gamma(k, z)$ : the upper imcomplete gamma function

