Is right-handed current contribution to $\overline{B} \rightarrow X_u l \nu$ decays corrected by non-trivial topology in QCD vacuum?

Hiroyuki Umeeda (Academia Sinica)

arXiv:2208.11896 [hep-ph]

TQCD 3rd meeting

Sep. 16 2022, Academia Sinica

Introduction

Semi-leptonic \bar{B} decays \longrightarrow Determinations of $|V_{cb}|, |V_{ub}|$ $-\mathcal{L} = \frac{g}{\sqrt{2}} (V_{cb} \bar{c}_L \gamma^{\mu} b_L + V_{ub} \bar{u}_L \gamma^{\mu} b_L) W_{\mu} + \text{H.c.}$

(1) Exclusive processes Theory: difficult $\bar{B} \to D^{(*)} l\nu, \bar{B} \to \pi l\nu, \bar{B} \to \rho l\mu$, etc.

(2) Inclusive processes $\stackrel{?}{=}$ sum of exclusive decays (quark-hadron duality) Hadronic final states are not specified. Operator product expansion (OPE): $\Gamma \propto m_b^5 \left(1 + \frac{c_2}{m_b^2} + \frac{c_3}{m_b^3} + \cdots \right)$ $1/m_b$: expansion parameter

Duality violation A source of uncertainty in (2)

Determinations of $|V_{cb}|$ and $|V_{ub}|$

Implication of new physics?

Crivellin, Pokorski [1407.1320]

- This interpretation is disfavored, shown in the absence of the light right-handed neutrino.
- Theoretical uncertainty is underestimated?
 - Duality violation is hard to quantify.

Inclusive processes

+ QCD corrections, power corrections

Possible sources of errors

Ultimate accuracy of the OPE is limited due to divergences in perturbative series.
 (1) Proliferation of Feynman diagrams (2) Renormalons

Approaches to duality violation

(1) Resonance-based model

[9510366, 9705390, 9708396, 9805404, 9805241, 9902315, 9903258, 0006346, 0106205, 0112323, 0605248, 2106.06215, 2111.01401]

• The large- N_c limit and linear Regge tragectory are considered as a starting point of discussion.

Pros: Theoretical predictions are rigorous.

Cons: This is mostly a toy model of QCD.

- ✓(2) Instanton-based model [9605465, 2208.11896]
 - This method takes account of a (fixed-sized) background instanton, more or less as an orientational direction to capture contributions related to the factorial divergence in power corrections.

Pros: Some realistic contributions could be examined (not a toy model).

Cons: Detail of the QCD vacuum is involved in a non-trivial way.

(3) Lattice QCD [2005.13730, 2203.11762]

• Reconstruction of the spectral function is considered for inclusive \overline{B} decays. Pros: It is based on *ab initio* evaluation of the hadronic correlator. Cons: Specific duality-violating components are suppressed in the Euclid space.

Fourmlas for inclusive width

Four contributions: (X, Y) = (L, L), (L, R), (R, L), (R, R)

$$\begin{cases} \Gamma_{XY} = -16G_F^2 |V_{ub}|^2 \operatorname{Im}(T_{XY}^{\mu\nu}L_{\mu\nu}) \\ T_{XY}^{\mu\nu} = -i \int d^4 x e^{-iq \cdot x} < \bar{B}_v |J_X^{\dagger\mu}(x) J_Y^{\nu}(0)| \bar{B}_v > \text{ Hadronic tensor} \\ L_{\mu\nu} = -\frac{1}{2\pi^4 x^8} (2x_\mu x_\nu - x^2 g_{\mu\nu}) & \text{Leptonic tensor} \end{cases}$$

Width: $\Gamma = c_L^2 \Gamma_{LL} + c_L c_R \Gamma_{LR} + c_R c_L \Gamma_{RL} + c_R^2 \Gamma_{RR}$ Discussed in the remaining part of this talk

For perturbative contributions, LL is chirally-favored while LR is chirally-suppressed $_{-5-}$ by m_{μ}/m_{b} .

Duality violation in hadronic tensor лу, $-\chi^{\mu\nu} \text{ Hadronic tensor: } T_{\mu\nu} = \int d^4x e^{iQx} S(x) \times (\cdots) \qquad S(x) = -\frac{\hat{x}}{2\pi^2 x^4}$ $f(Q) = \int_{-\infty}^{+\infty} dx \frac{e^{iQx}}{x^2 + \rho^2} \quad \text{Difference: pole at } x^2 = -\frac{\rho}{\rho^2}$ (1) Exact evalution: $f_1(Q) = \frac{\pi}{\rho} e^{-Q\rho}$ (2) Short-distant (2) Short-distance expansion at $x^2 = 0$ first (OPE): $f_2(Q) = 0$ $\frac{1}{x^2 + \rho^2} = \frac{1}{\rho^2} \left| 1 - \frac{x^2}{\rho^2} + \left(\frac{x^2}{\rho^2}\right)^2 - \cdots \right|$ • An error is induced in (2), if there are poles at $x^2 = -\rho^2$.

Duality violation in hadronic tensor

$$\frac{1}{p} + \frac{1}{p} + \frac{1}{$$

Single instanton approximation (SIA)

- Due to the diluteness of the instanton vacuum, the leading contribution arises from the nearest instanton at the short-distance region.
- Multiple instantons effects are taken into account by,

Width for RHC

The saddle point approximation can be applied to evaluate the other integrals such as the instanton center.

 $\begin{cases} (1) \text{ For total semileptonic width: } Q_{\mu} = m_b v_{\mu} \\ (2) \text{ For lepton energy distribution: } Q_{\mu} = m_b v_{\mu} - p_l \end{cases}$

Numerical resutls for width

$$\begin{array}{l} \text{Ratio:} \ R_{\text{XY}}^{\text{tot}}[B \to X_u l\nu] = \frac{\tilde{\Gamma}_{\text{XY}}^1}{\Gamma_{\text{XY}}^{\text{pert}}} \quad (\text{X}, \text{Y}) = (\text{L}, \text{L}), (\text{L}, \text{R}) \\ \\ \begin{cases} \text{RHC} \ R_{\text{LR}}^{\text{tot}} \simeq + \frac{2}{3} d_0 \left(\frac{m_b^2}{m^* m_u} \right) \frac{96\pi}{(m_b \rho_0)^8} \cos(2m_b \rho_0) \\ \text{SM} \ R_{\text{LL}}^{\text{tot}} \simeq - \frac{2}{3} d_0 \frac{96\pi}{(m_b \rho_0)^8} \sin(2m_b \rho_0) \\ \end{cases} \quad m_b \to m_c, \ m_u \to m_d \\ \text{for } D \to X_d l\nu \\ \end{cases} \\ \\ \hline \tilde{B} \text{ decays} \begin{cases} \text{RHC} \ R_{\text{LR}}^{\text{tot}}[\bar{B} \to X_u l\nu] \ 2 \times 10^{-2} \ 7 \times 10^{-3} \ 1 \times 10^{-2} \ 5 \times 10^{-3} \\ \text{SM} \ R_{\text{LL}}^{\text{tot}}[\bar{B} \to X_u l\nu] \ 2 \times 10^{-7} \ 7 \times 10^{-8} \ 2 \times 10^{-7} \ 7 \times 10^{-8} \\ \end{cases} \\ \hline Mass \text{ inputs} \end{cases} \\ \hline Mass \text{ inputs} \quad \hline (m_c, m^*) [\text{GeV}] \ (1.27, 0.120) \ (1.67, 0.120) \ (1.27, 0.177) \ (1.67, 0.177) \\ \hline D \text{ decays} \begin{cases} \text{RHC} \ R_{\text{LR}}^{\text{tot}}[D \to X_d l\nu] \ 3 \times 10^{-3} \ 3 \times 10^{-4} \ 3 \times 10^{-3} \ 3 \times 10^{-4} \\ \end{cases} \\ \hline \end{array}$$

The importance of duality violation for the RHC is higher than that of the SM.

Numerical results for lepton energy spectra Ratio: $R_{XY}[B \rightarrow X_u l\nu] = \frac{(d\Gamma/dy)|_{XY}^I}{(d\Gamma/dy)|_{XY}^{pert}}$ (X, Y) = (L, L), (L, R)

 $y = 2E_l/m_b$: dimensionless lepton energy

$$\begin{cases} \text{RHC } R_{\text{LR}} \simeq +\frac{2}{3} d_0 \frac{m_b}{m^*} \frac{16\pi}{(m_b \rho_0)^5} \frac{1}{\left(1 - \frac{y}{2}\right)^2} \sin\left(2m_b \rho \left(1 - \frac{y}{2}\right)\right), \ 120 \text{ MeV} \le m^* \le 177 \text{ MeV} \\ \text{SM } R_{\text{LL}} \simeq -\frac{2}{3} d_0 \frac{48\pi}{(m_b \rho_0)^5} \frac{1}{\left(1 - \frac{y}{2}\right)^3} \cos\left(2m_b \rho \left(1 - \frac{y}{2}\right)\right) \end{cases}$$

Conclusion

- We have studied an instanton-induced correction to $\overline{B} \to X_u l \nu$ decays, finding that the patterns of duality violation depend on the effective operators.
- The zero-mode induced duality violation gives rise to the chirally-favored contribution in the presence of the RHC.
- Within the SIA for the RHC, the duality-violating component of the width is at most $\mathcal{O}(10^{-2})$ and $\mathcal{O}(1)$ relative to the chirally-suppressed perturbative contributions in \overline{B} and D decays, respectively.
- As for the lepton energy distributions, the duality violation is maximally $\mathcal{O}(1)$ and $\mathcal{O}(10)$ for $0 \le y \le 0.5$ in \overline{B} and D decays, respectively. $y = y \le 0.5$

Backup

Inclusive determinations of $|V_{\mu b}|$

HFLAV2022 Experimental and theoretical errors for $|V_{\mu b}|$

	BLNP	DGE	GGOU	ADFR	BLL
Input parameters					
scheme	\mathbf{SF}	\overline{MS}	kinetic	\overline{MS}	1S
Ref.	[598, 599]	Ref. [600]	see Sec. 7.2.2	Ref. [601]	Ref. [581]
$m_b \; (\text{GeV})$	4.582 ± 0.026	4.188 ± 0.043	$4.554\ {\pm}0.018$	4.188 ± 0.043	4.704 ± 0.029
$\mu_{\pi}^2 ~(\text{GeV}^2)$	$0.202 \ ^{+0.091}_{-0.098}$	-	$0.464\ {\pm}0.076$	-	-
Ref.	$ V_{ub} $ values $[10^{-3}]$				
CLEO E_e [589]	$4.22\pm0.49^{+0.29}_{-0.34}$	$3.86 \pm 0.45^{+0.25}_{-0.27}$	$4.23 \pm 0.49 ^{+0.22}_{-0.31}$	$3.42 \pm 0.40^{+0.17}_{-0.17}$	-
Belle M_X, q^2 [591]	$4.51 \pm 0.47 \substack{+0.27 \\ -0.29}$	$4.43 \pm 0.47 ^{+0.19}_{-0.21}$	$4.52\pm0.48^{+0.25}_{-0.28}$	$3.93 \pm 0.41 \substack{+0.18 \\ -0.17}$	$4.68\pm0.49^{+0.30}_{-0.30}$
Belle E_e [590]	$4.93 \pm 0.46 ^{+0.26}_{-0.29}$	$4.82 \pm 0.45 \substack{+0.23 \\ -0.23}$	$4.95 \pm 0.46 \substack{+0.16 \\ -0.21}$	$4.48 \pm 0.42 \substack{+0.20 \\ -0.20}$	-
BABAR E_e [585]	$4.41 \pm 0.12^{+0.27}_{-0.27}$	$3.85\pm0.11^{+0.08}_{-0.07}$	$3.96 \pm 0.10^{+0.17}_{-0.17}$	-	-
BABAR $E_e, s_{\rm h}^{\rm max}$ [588]	$4.71 \pm 0.32 \substack{+0.33 \\ -0.38}$	$4.35\pm0.29^{+0.28}_{-0.30}$	-	$3.81 \pm 0.19 ^{+0.19}_{-0.18}$	
Belle E_{ℓ}^{B} , (M_X, q^2) fit [593]	$4.05\pm0.23^{+0.18}_{-0.20}$	$4.16\pm0.24^{+0.12}_{-0.11}$	$4.15\pm0.24^{+0.08}_{-0.09}$	$4.05\pm0.23^{+0.18}_{-0.18}$	-
BABAR M_X [580]	$4.24 \pm 0.19 \substack{+0.25 \\ -0.25}$	$4.47 \pm 0.20^{+0.19}_{-0.24}$	$4.30\pm0.20^{+0.20}_{-0.21}$	$3.83 \pm 0.18 \substack{+0.20 \\ -0.19}$	-
BABAR M_X [580]	$4.03 \pm 0.22^{+0.22}_{-0.22}$	$4.22\pm0.23^{+0.21}_{-0.27}$	$4.10 \pm 0.23^{+0.16}_{-0.17}$	$3.75 \pm 0.21^{+0.18}_{-0.18}$	-
BABAR M_X, q^2 [580]	$4.32\pm0.23^{+0.26}_{-0.28}$	$4.24 \pm 0.22^{+0.18}_{-0.21}$	$4.33 \pm 0.23^{+0.24}_{-0.27}$	$3.75 \pm 0.20^{+0.17}_{-0.17}$	$4.50 \pm 0.24^{+0.29}_{-0.29}$
BABAR P_+ [580]	$4.09 \pm 0.25 \substack{+0.25 \\ -0.25}$	$4.17 \pm 0.25 \substack{+0.28 \\ -0.37}$	$4.25 \pm 0.26 \substack{+0.26 \\ -0.27}$	$3.57 \pm 0.22^{+0.19}_{-0.18}$	-
BABAR p_{ℓ}^* , (M_X, q^2) fit [580]	$4.33 \pm 0.24^{+0.19}_{-0.21}$	$4.45\pm0.24^{+0.12}_{-0.13}$	$4.44 \pm 0.24 \substack{+0.09 \\ -0.10}$	$4.33 \pm 0.24 \substack{+0.19 \\ -0.19}$	-
BABAR p_{ℓ}^* [580]	$4.34 \pm 0.27^{+0.20}_{-0.21}$	$4.43 \pm 0.27^{+0.13}_{-0.13}$	$4.43 \pm 0.27^{+0.09}_{-0.11}$	$4.28 \pm 0.27 \substack{+0.19 \\ -0.19}$	-
Belle M_X, q^2 [592]	-	-	-	-	$5.01 \pm 0.39 \substack{+0.32 \\ -0.32}$
Average	$4.28\pm0.13^{+0.20}_{-0.21}$	$3.93 \pm 0.10^{+0.09}_{-0.10}$	$4.19\pm0.12^{+0.11}_{-0.12}$	$3.92\pm0.12^{+0.18}_{-0.12}$	$4.62\pm0.20^{+0.29}_{-0.29}$

Exclusive average: $|V_{ub}| = (3.51 \pm 0.12) \times 10^{-3}$

Recent exclusive determinations of $|V_{cb}|$

Ricciardi [2103.06099]

2017: Belle published unfolded B → D*lv data [1702.01521] This enables theorists to perform their own fit.
{|V_{cb}|_{CLN} = (38.2 ± 1.5) × 10⁻³ |V_{cb}|_{BGL} = (41.7^{+2.0}_{-2.1}) × 10⁻³ Bigi, Gambino and Schacht [1703.06124]
BGL is consistent with both CLN and inclusive.
2018: New Belle data published [1809.03290]
2019: New BaBar data published [1903.10002]
Both CLN and BGL are deviated from the inclusive value.

Form factor in exclusive $B \rightarrow D^*$ decays [2112.13775]

On universality of effective mass in SIA [0106019] $S(x,y) = \frac{\psi_0(x)\psi_0^{\dagger}(y)}{im^*}$

*m** should be universal for two-quark condensate, four-quark condensates, meson correlators, etc.

TABLE I: Quark condensates evaluated in the full instanton ensemble and from the leading-instanton, only.

condensate	complete calculation	LI
χ_{uu}	$(-232\pm 5 MeV)^3$	$(-198 \pm 1 MeV)^3$
χ_{uudd}	$(310 \pm 7 MeV)^6$	$(309 \pm 3 MeV)^6$

An uncertainty is involved for the process where only one zero-mode contributes.

Two-quark condensate:
$$\chi_{uu} = \left\langle Tr\left[\sum_{I,J} \psi_{0I}(x) \left(\frac{1}{T}\right)_{IJ} \psi_{0J}^{\dagger}(x)\right] \right\rangle$$

Four-quark condensate: $\chi_{uudd} := \langle 0|Tr[\bar{u}(x)u(x)] \cdot Tr[\bar{d}(x)d(x)]|0 \rangle = \langle [TrS(x,x)]^2 \rangle$

Overlap matrix element:
$$T_{IJ} = \int d^4 z \psi^{\dagger}(z)_I (i \partial) \psi(z)_J$$

Part larger than whole paradox [9605465] Total width: $\frac{\Gamma}{\Gamma_0}\Big|_{LR}^{zm} = -\frac{2}{3}d_0\left(\frac{m_b}{m^*}\right)\frac{192\pi}{(m_b\rho_0)^8}\cos(2m_b\rho_0)$ Differential width: $\frac{1}{\Gamma_0}\frac{d\Gamma}{dy}\Big|_{LR}^{zm} = -\frac{2}{3}d_0\left(\frac{m_b}{m^*}\right)\frac{96\pi}{(m_b\rho_0)^5}\frac{y^2}{\left(1-\frac{y}{2}\right)^2}\sin\left(2m_b\rho_0\left(1-\frac{y}{2}\right)\right)$

- Absolute size of the differential width is parametrically larger than the total width by $\sim (m_b \rho)^3$.
- The similar behavior has been already found in [9605465] for non-zero mode contribution in the SM.
- In the endpoint region, the semi-classical approximation is not valid *per se*.

Treatment to obtain the lepton energy distribution

In [9605465]: the dispersion relation is imposed via the OPE-like counterterms.

In this work: the momentum (position) space propagator is used for charged lepton (neutrino) to avoid the endpoint integral.

Detail of finite distance singularity

$$f_1(Q) = \int_0^\infty \frac{e^{iQx}}{x^2 + \rho^2} dx \qquad f_1(Q) + f_1(-Q) = \int_{-\infty}^{+\infty} \frac{e^{iQx}}{x^2 + \rho^2} dx$$

Below : $\rho, Q > 0$

$$f_1(Q) + f_1(-Q) = \frac{\pi}{\rho} e^{-|Q|\rho}$$

(-Q) = 0

(2) Short-distance expansion first (OPE)

(1) Exact evaluation $\begin{cases}
f_1(+Q) = +\frac{i}{\rho} \sum_{k=0}^{\infty} \frac{(2k)!}{(Q\rho)^{2k+1}} + \frac{\pi}{2\rho} e^{-Q\rho}, \\
f_1(-Q) = -\frac{i}{\rho} \sum_{k=0}^{\infty} \frac{(2k)!}{(Q\rho)^{2k+1}} + \frac{\pi}{2\rho} e^{-Q\rho}.
\end{cases}$

$$f_{2}(+Q) = +\frac{i}{\rho} \sum_{k=0}^{\infty} \frac{(2k)!}{(Q\rho)^{2k+1}} - \frac{i}{\rho} \sum_{k=0}^{\infty} \frac{\lim_{b \to \infty} \Gamma(2k+1, -ib)}{(Q\rho)^{2k+1}},$$

$$f_{2}(-Q) = -\frac{i}{\rho} \sum_{k=0}^{\infty} \frac{(2k)!}{(Q\rho)^{2k+1}} + \frac{i}{\rho} \sum_{k=0}^{\infty} \frac{\lim_{b \to \infty} \Gamma(2k+1, +ib)}{(Q\rho)^{2k+1}}.$$

$$f_{2}(Q) + f_{2}(Q) + f$$

 $\Gamma(k, z)$: the upper incomplete gamma function