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to m⇡. The resummation prescription given in [36] is to replace !̃
n by ⇣

n
C
2
n(⌘)/(n + 1)Q̃2, where ⇣ =

p
p2q2/Q̃

2,

⌘ = p · q/
p

p2q2, and C
2
n(⌘) is a Gegenbauer polynomial. In other words,

V
[µ⌫](q, p) = �

2i✏
µ⌫⇢�

q⇢p�

Q̃2
f⇡

1X

n=0,even

C
(n)
W (Q̃2

, µ, m )h⇠ni


⇣
n
C
2
n(⌘)

2n(n + 1)Q̃2

�
. (20)

Truncating at the order of !̃
2,

V
[µ⌫](q, p) ⇡ �

2i✏
µ⌫⇢�

q⇢p�

Q̃2
f⇡

⇢
C

(0)
W (Q̃2

, µ, m ) + C
(2)
W (Q̃2

, µ, m )h⇠2i


⇣
2
C
2
2(⌘)

12Q̃2

��
, (21)

where the explicit one-loop expressions for C
(0)
W (Q̃2

, µ, m ) and C
(2)
W (Q̃2

, µ, m ) are given in Ref. [25]. Equation (21)
is used in this analysis to extract h⇠

2
i. As described in Refs. [14, 25], in addition to h⇠

2
i, f⇡ and m are also fit

parameters in the analysis procedure that will be presented in detail in Sec. V. Note that while the hadronic matrix
element is renormalization scheme and scale independent, the factorization of this matrix element into short-distance
Wilson coe�cients and long-range Mellin moments are dependent on the renormalization scheme and scale. The
calculation of the Wilson coe�cients was determined in the MS scheme and thus the fitted heavy-quark masses and
Mellin moments are directly extracted in this scheme.

B. The correlation functions

The power of the hadronic tensor lies in its amenability to lattice QCD calculations. The pion LCDA defined in
Eq. (1) cannot be computed directly in Euclidean-space LQCD due to the light-like separation vector z. In contrast,
the hadronic tensor V

µ⌫ can be written in terms of quantities calculable on the lattice. Defining

R
µ⌫(⌧ ;p,q) =

Z
d
3z e

iq·z
h0|T [Jµ

A(⌧/2, z/2)J⌫
A(�⌧/2, �z/2)]|⇡(p)i

= h0|J
µ
A(⌧/2; (p + q)/2)J⌫

A(�⌧/2; (p � q)/2)|⇡(p)i , (22)

then the hadronic tensor is the Fourier transform of R
µ⌫ in the temporal direction:

V
µ⌫(q, p) =

Z
d⌧ e

iq4⌧R
µ⌫(⌧ ;p,q) . (23)

Using lattice methods, one can compute two-point and three-point correlation functions

C2(⌧,p) =

Z
d
3x e

ip·x
h0|O⇡(⌧,x)O†

⇡(0,0)|0i

= h0|O⇡(⌧,p)O†
⇡(0,p)|0i , (24)

and

C
µ⌫
3 (⌧e, ⌧m;pe,pm) =

Z
d
3
xe d

3
xm e

ipe·xee
ipm·xmh0|T

⇥
J
µ
A(⌧e,xe)J

⌫
A(⌧m,xm)O†

⇡(0)
⇤
|0i

= h0|J
µ
A(⌧e,pe)J

⌫
A(⌧m,pm)O†

⇡(0,p)|0i . (25)

The three-point correlator is shown diagrammatically in Figure 2.

For 0 ⌧ ⌧ ⌧ T , the 2-point correlator is saturated with the contribution of the lowest-lying hadronic state and can
be written as

C2(⌧,p) ⇠
|Z⇡(p)|2

2E⇡(p)

h
e
�E⇡(p)⌧ + e

�E⇡(p)(T�⌧)
i

, (26)


