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OPE. C-parity imposes the constraint �⇡(⇠, µ) = �⇡(�⇠, µ) in the isospin limit, leading to

�⇡(⇠, µ) =
3

4
(1 � ⇠

2)
1X

n=0,even

�n(µ)C3/2
n (⇠) , (2)

where C
3/2
n (⇠) are the Gegenbauer polynomials, with C

3/2
0 (⇠) = 1 and C

3/2
2 (⇠) = (�3 + 15⇠

2)/2. The Gegenbauer
moments, �n(µ), are defined as

�n(µ) =
2(2n + 3)

3(n + 1)(n + 2)

Z 1

�1
d⇠ C

3/2
n (⇠)�⇡(⇠, µ) . (3)

Because of conformal symmetry, the �n(µ) do not mix under the renormalization group (RG) evolution at one loop.
To this order, their renormalization scale dependence is [30]
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where ↵s is the strong coupling, �0 = 11 � 2Nf/3 (Nf being the number of flavours) is the coe�cient of the leading-
order (LO) QCD �-function, and �n is the anomalous dimension,
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Since �n increases monotonically with n, one expects that a truncated version of the OPE in Eq. (2) can be a good
approximation to �⇡(⇠, µ) at large enough renormalization scales. In the regime where µ � ⇤QCD (with ⇤QCD being
the QCD dynamical scale), the pion LCDA is dominated by the zeroth Gegenbauer moment. Equations (4) and (5)
lead to the asymptotic form the pion LCDA,
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where the normalization �0 = 1 has been imposed.

The Gegenbauer moments in Eqs. (2) and (3) can be expressed as linear combinations of the Mellin moments h⇠
n
i,

which are defined as
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For instance, from Eqs. (2) and (7) it is straightforward to obtain
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In general, knowledge of h⇠
0
i, h⇠

2
i, ..., h⇠

n
i is equivalent to that of �0, �2, ..., �n. These Mellin moments, h⇠
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be related to matrix elements of local, twist-two, operators,
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where the Lorentz indices are totally symmetrized, with
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and the traces are taken in all possible pairs amongst the Lorentz indices, µ0, µ1, . . . , µn. As discussed in the last
paragraph, from the leading-order result of QCD perturbation theory, it is natural to expect that knowledge of the
first few Gegenbauer moments allows one to construct �⇡(⇠, µ) reliably at su�ciently large µ. This also implies that


