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To begin, we note that while this function is real in
Minkowski space, it is in general complex in Euclidean
space. This is because p4 = iE⇡(p), and we take q4 real.
Noting again the definitions of the kinematical variables

⌘ =
p · qp
p2q2

, (20)

⇣ =

p
p2q2

Q̃2
. (21)

We see that while ⇣2n is always real, under certain kine-
matical choices, ⌘ is complex:

⌘ =
p · qp
p2q2

+ i
E⇡(p)q4p

p2q2
. (22)

Note that only the even moments are non-zero due to
our assumption of isospin symmetry. The corresponding
Gegenbauer polynomials are also even. Thus we only
have even factors of ⌘, and so we see that if we have the
spatial inner product p · q 6= 0, the coe�cient of

⌦
⇠2
↵

is complex. Note that since the kinematic factors are
absent from the zeroth moment, this allows one separate
the contribution from the lowest moment, and thus gain
direct access to the second moment.

There are several caveats to this. Firstly, the overall
normalization of the HOPE can spoil this result. In par-
ticular consider the term ✏µ⌫↵�q↵p� . In this work, we
study the combination µ = 1, ⌫ = 2. We thus have

✏12↵�q↵p� = q3iE⇡(p)� q4p3. (23)

Since this is an overall multiplicative factor, it will in gen-
eral imbue all the moments (including the zeroth), with
a complex kinematical factor. We can ensure this does
not occur by taking kinematics where either p3 = 0 or
q3 = 0. In either case, the kinematic factor will again be
either purely real or purely imaginary, and thus the spe-
cial kinematics may be used to directly access the second
moment. Secondly, in this discussion we have neglected
the role of the Wilson coe�cients, however, we note that
these can only give corrections which are O(↵S), and
will be numerically small. Thus as we shall see the ‘spe-
cial kinematics’ are still e↵ective in isolating the second
Mellin moment. A demonstration of the special kinemat-
ics is shown in Fig. 2. To summarize, in this work, we
use the conditions

p · q 6= 0, (24)

p3 = 0. (25)

In particular, we choose to perform the simulations with
the momentum

p = (1, 0, 0)⇥ 0.64 GeV, (26)

q = (1/2, 0, 1)⇥ 0.64 GeV, (27)

The reason for the apparent fractional lattice momentum
is that as we shall see the ‘physical’ momenta are linear
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FIG. 2. Examining the special kinematics. By choosing the
kinematics p = (1, 0, 0)⇥0.64 GeV, q = (1/2, 0, 1)⇥0.64 GeV
and considering the real and imaginary parts independently,
it is possible to see that while the imaginary part is satu-
rated with the contribution from the lowest moment, the real
part allows one to directly access the second Mellin moment
directly.

combinations of the inserted momenta, and in particu-
lar, we will see that we must include a factor of half in
the definition of q. This kinematic choice leads to less
kinematical suppression;

max[W (0), q4] = 1 (28)

max[W (2), q4] = 0.02, (29)

but most importantly allows one direct access to the sec-
ond Mellin moment. Having now optimized our kinemat-
ical choice, we proceed to discuss the numerical simula-
tion, and resulting extraction of the Mellin moment.

III. LATTICE COMPUTATION

The hadronic tensor is the Fourier transform of a
current-current correlator, so it can be written in terms
of 2- and 3-point functions of the form

C2(⌧⇡,p) =

Z
d3x eip·xh0|O⇡(x, ⌧⇡)O

†
⇡(0, 0)|0i (30)


