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By calculating the matrix element Tµ⌫(p, q) on the lat-
tice, one may then perform a fit to the form of the heavy
quark OPE, and thus obtain the Mellin moments of the
distribution amplitude. We note that when computing
the hadronic tensor, kinematics should be chosen such
that we remain in the unphysical region. This requires
choosing

(p+ q)2 < m2
hl ⇡ (m + ⇤QCD), (13)

where mhl is the mass of the lightest heavy-light me-
son. This ensures that the analytic continuuation to
Minkowski space is may be straightforwardly obtained
by the replacement q4 ! iq0. Thus this method is con-
strained to work in the window

⇤QCD ⌧

p
q2 < m ⌧

1

a
(14)

By performing the calculation at a number of lattice spac-
ings, one may then extrapolate to the continuum in the
usual way [33].

A. E�cient Kinematics for an Extraction of the
Second Mellin Moment

In this work, we are primarily interested in an extrac-
tion of the second Mellin moment of the pion’s LCDA.
From Eqn. 8, it is possible to see that the nth moment is
weighted by the kinematical factor

C
2
n(⌘)

2n(n+ 1)
C(n)

W (Q̃2)⇣n. (15)

For this section, we shall assume that the Wilson coe�-
cients are unity. This results inO(↵S) errors, but will not
e↵ect the features discussed here. We define the weight
function

W (n) =
C
2
n(⌘)

2n(n+ 1)
⇣n. (16)

This weighting factor is the origin of the di�culty in ex-
tracting the higher moments in OPE approaches. For
example in our numerical work we fix the physical size of
the system to be L ⇥ a = 1.92 fm for all choices of the
lattice spacing, a. Thus the smallest unit of momentum
is

�p =
2⇡

La
= 0.64 GeV, (17)

with the pion at rest p = (0, 0, 0) ⇥ 0.64 GeV and the
current insertion momentum q = (0, 0, 1) ⇥ 0.64 GeV
with m⇡ = 0.56 GeV and m = 2.7 GeV, we find when
scanning over q4

max[W (0), q4] = 1 (18)

max[W (2), q4] = 0.008, (19)
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FIG. 1. We demonstrate the suppression factor obtained from
the kinematic weight function W (n) for several di↵erent kine-
matic choices. We examine the combinations p = (0, 0, 0),
q = (0, 0, 1) (blue circles), p = (1, 0, 0), q = (1/2, 0, 1) (earth
squares) and p = (4, 0, 0), q = (2, 0, 1) (garnet diamonds),
where all momenta should be multiplied by 0.64 GeV to deter-
mine their physical values. As we explain, in the case where
p · q 6= 0, the weighting function will be complex. Since
p · q = 0 for the kinematic choice described by the blue cir-
cles, there is no imaginary part, and we thus exclude those
points from the lower plot for clarity.

with higher moments further suppressed. Under nor-
mal circumstances, an extraction of even the first non-
trivial (ie, the second) moment with this particular choice
of kinematics would be a challenging task. Note how-
ever that by changing the kinematics, one may reduce
the kinematic suppression. This fact is demonstrated in
Fig. 1, where a number of di↵erent choices of kinemat-
ics are shown. We note that in general the extraction of
higher Mellin moments requires higher pion momentum,
which poses a challenge for numerical determinations.

Since we wish to numerically simulate the Compton
tensor so that we may determine the second Mellin mo-
ment, it is advantageous to explore our kinematic op-
tions to best optimize the desired signal. In particular,
by studying the properties of this weight function, we
can determine kinematics which allow us direct access
to the second Mellin moment, somewhat bypassing the
kinematical suppression.


