Symmetries of Meson Correlators in High Temperature QCD with Nf=2+1+1 Physical Domain-Wall Quarks

Ting-Wai Chiu (趙挺偉)

National Taiwan Normal University

TQCD Meeting, Academia Sinica, September 16, 2022

<u>Outline</u>

- Introduction
- Symmetries and Meson Correlators
- Gauge Ensembles
- The Temporal Correlators of $\overline{u}d$ Mesons
- The Spatial Correlators of $\overline{u}d$ Mesons
- Conclusions

Introduction

- What is the nature of quark matter at high T QCD? It is relevant to the matter creation in the early universe, and the heavy-ion collision expt. at RHIC and LHC. A first step is to find out the sym. of high T QCD, since the nature of matter can be unveiled from its sym. At $T > T_c \approx 150$ MeV, the $SU(2)_L \times SU(2)_R$ chiral sym. of *u* and *d* quarks is effectively restored.
- Is $U(1)_A$ symmetry is also restored at $T_1 \approx T_c$?

Introduction (cont)

At $T > T_1 \approx T_c$, the $U(1)_A \times SU(2)_I \times SU(2)_R$ chiral sym. of *u* and *d* quarks is effectively restored. Are they the only symmetries of QCD from T_1 to $T \gg T_c$ such that $g_{eff}^2(T) \approx 0$ and the quarks and gluons behaving like a gas of free particles and forming the quark-gluon plasma?

Are there any emerging sym. which are manifested in observables but not in the *QCD* lagrangian ?

Introduction (cont)

- Recently a larger symmetry group $SU(2)_{CS}$ chiral-spin [Glozman, 1407.2798; Glozman & Pak, 1504.02323] is observed to be approximately manifested in the meson correlators, in $N_f = 2$ lattice QCD with DWF, for $T \approx 220-500$ MeV.
- [C. Rohrhofer et al. 1902.0319; 1909.00927]

This suggests the possible existence of hadron-like objects which are predominantly bounded by the chromoelectric field into color singlets.

Introduction (cont)

What would be the scenarios of emergence of $SU(2)_{CS}$ color-spin symmetry in *QCD* with dynamical light and heavy quarks: (u, d, s); (u, d, s, c); (u, d, s, c, b)? I study the meson correlators in $N_f = 2 + 1 + 1$ lattice QCD with domain-wall quarks at the physical point, for $T \approx 190 - 770$ MeV. The meson correlators include a complete set of Dirac bilinears, and each for six combinations of quark flavors ($\overline{u}d$, $\overline{u}s$, $\overline{u}c$, $\overline{s}c$, $\overline{s}s$, $\overline{c}c$). In this talk, I will focus on the $\overline{u}d$ meson correlators.

The correlation function of meson interpolator
$$\bar{q}_1 \Gamma q_2$$

 $C_{\Gamma}(t, \vec{x}) = \left\langle (\bar{q}_1 \Gamma q_2)_x (\bar{q}_1 \Gamma q_2)_0^{\dagger} \right\rangle \qquad (D_c + m_q)^{-1}$
 $= \left\langle \operatorname{tr} \left[\Gamma (D_c + m_1)_{x,0}^{-1} \Gamma (D_c + m_2)_{0,x}^{-1} \right] \right\rangle_{\operatorname{confs}} \qquad (D_c + m_q)^{-1}$
 $quark propagator$
 $C_{\Gamma}(t, \vec{p}) = \int_0^{\infty} \frac{d\omega}{2\pi} \frac{\cosh\left[\omega\left(t - \frac{1}{2T}\right)\right]}{\sinh\left(\frac{\omega}{2T}\right)} \rho_{\Gamma}(\omega, \vec{p})$
spectral function
 $C_{\Gamma}(t) = \sum_{x_1, x_2, x_3} C_{\Gamma}(t, \vec{x}) \qquad C_{\Gamma}(z) = \sum_{x_1, x_2, x_4} C_{\Gamma}(t, \vec{x})$
temporal *t*-correlator
 $\Rightarrow \rho(\omega, \vec{p} = 0) \qquad \Rightarrow \rho(\omega = 0, p_1 = p_2 = 0)$

The classification of meson interpolators $\bar{q}_1 \Gamma q_2$.

Name and notation	Γ (for $t\text{-correlators})$	Γ (for z-correlators)
Scalar (S)	1	1
Pseudocalar (P)	γ_5	γ_5
Vector (V_k)	$\gamma_k \ (k=1,2,3)$	$\gamma_k \ (k=1,2,4)$
Axial vector (A_k)	$\gamma_5 \gamma_k \ (k=1,2,3)$	$\gamma_5 \gamma_k \ (k=1,2,4)$
Tensor vector (T_k)	$\gamma_4 \gamma_k \ (k=1,2,3)$	$\gamma_3\gamma_k\ (k=1,2,4)$
Axial-tensor vector (X_k)	$\gamma_5\gamma_4\gamma_k \ (k=1,2,3)$	$\gamma_5\gamma_3\gamma_k~(k=1,2,4)$

global $U(1)_A$ rotation $q(x) \to \exp(i\gamma_5\theta)q(x), \quad \bar{q}(x) \to \bar{q}(x)\gamma_4 \exp(-i\gamma_5\theta)\gamma_4$ If $U(1)_A$ symmetry is effectively restored for $T \ge T_1 \approx T_c$ $C_s = C_P$ (correlators of scalar and pseudoscalar are degenerate)

 $C_{T_{k}} = C_{X_{k}}$ (also those of tensor and axial-tensor vectors.)

flavor doublet $q = (q_1, q_2)^T$ vector bilinears (V_k) $\bar{q}(x)\gamma_k \frac{\tau_{\pm}}{2}q(x), \quad \tau_{\pm} = \tau_1 \pm i\tau_2 \quad \{\tau_1, \tau_2, \tau_3\} \text{ are Pauli matrices}$ axial-vector bilinears $(A_k) = \bar{q}(x)\gamma_5\gamma_k\frac{\tau_{\pm}}{2}q(x)$ flavor non-singlet axial rotations $q(x) \to \exp\left(i\gamma_5\frac{\vec{\tau}}{2}\cdot\vec{\theta}\right)q(x), \quad \bar{q}(x) \to \bar{q}(x)\gamma_4\exp\left(-i\gamma_5\frac{\vec{\tau}}{2}\cdot\vec{\theta}\right)\gamma_4$ The effective restoration $SU(2)_L \times SU(2)_R$ chiral sym. for $T \ge T_c \iff$

 $C_{V_k} = C_{A_k}$ (correlators of vector and axial-vector are degenerate)

The $SU(2)_{CS}$ (chiral-spin) transformations

$$q(x) \to \exp\left(i\frac{\vec{\Sigma}_{\mu}}{2}\cdot\vec{\theta}\right)q(x), \quad \bar{q}(x) \to \bar{q}(x)\gamma_4 \exp\left(-i\frac{\vec{\Sigma}_{\mu}}{2}\cdot\vec{\theta}\right)\gamma_4, \quad \mu = 1, 2, 3, 4$$

 $\vec{\Sigma}_{\mu} = \{\gamma_5, \gamma_{\mu}, i\gamma_{\mu}\gamma_5\}, \text{ and } \vec{\theta} \text{ can be global or local parameters}$

 $SU(2)_{CS}$ contains $U(1)_A$ as a subgroup.

 $SU(2)_{CS}$ is not a sym. of the *QCD* lagrangian, but the color charge $Q^a = \int d^3x \ \psi^{\dagger} T^a \psi$. In a given frame, the quark-gluon interaction can be composed into temporal and spatial parts: $\overline{\psi}(\gamma_4 D_4 + \gamma_i D_i)\psi$. In the temporal part $\overline{\psi}\gamma_4 D_4 \psi = \psi^{\dagger}(\partial_4 + igT^a A_4^a)\psi$ the interaction term $ig\psi^{\dagger}T^a A_4^a\psi$ is invariant under $SU(2)_{CS}$.

2022/09/16

This allows $SU(2)_{CS}$ chiral-spin symmetry to distinguish between chromoelectric and chromomagnetic interactions in a given frame. The emergence of $SU(2)_{CS}$ suggests the possible existence of hadron-like objects which are predominantly bounded by the chromoelectric field into color singlets. For the *t*-correlators, $\mu = 4$ (not mixing op. with different spins) $SU(2)_{CS} \times S_3$ transformations generate one triplet and one nonet

 $(A_1, A_2, A_3); (V_1, V_2, V_3, T_1, T_2, T_3, X_1, X_2, X_3)$

If the $SU(2)_{CS}$ is effectively restored for $T \ge T_{CS} > T_1$

$$C_{V_k} = C_{T_k} = C_{X_k}$$

This allows $SU(2)_{CS}$ chiral-spin symmetry to distinguish between chromoelectric and chromomagnetic interactions in a given frame. The emergence of $SU(2)_{CS}$ suggests the possible existence of hadron-like objects which are predominantly bounded by the chromoelectric field into color singlets. For the *t*-correlators, $\mu = 4$ (not mixing op. with different spins) $SU(2)_{CS} \times S_3$ transformations generate one triplet and one nonet

 $(A_1, A_2, A_3); (V_1, V_2, V_3, T_1, T_2, T_3, X_1, X_2, X_3)$

If the $SU(2)_{CS}$ is effectively restored for $T \ge T_{CS} > T_1$

$$C_{A_k} = C_{V_k} = C_{T_k} = C_{X_k}$$
 $SU(2)_L \times SU(2)_R \times SU(2)_{CS}$

For the z-correlators, the $SU(2)_{CS} \times S_2$ transformations generate the following multiplets:

$$(V_1, V_2); (A_1, A_2, T_4, X_4), \qquad \mu = 1$$

 $V_4; (A_4, T_1, T_2, X_1, X_2). \qquad \mu = 2$

If the $SU(2)_{CS}$ is effectively restored for $T \ge T_{CS} > T_1$

$$C_{A_k} = C_{T_4} = C_{X_4}$$
$$C_{A_4} = C_{T_k} = C_{X_k}$$

For the z-correlators, the $SU(2)_{CS} \times S_2$ transformations generate the following multiplets:

$$(V_1, V_2); (A_1, A_2, T_4, X_4), \qquad \mu = 1$$

 $V_4; (A_4, T_1, T_2, X_1, X_2). \qquad \mu = 2$

If the $SU(2)_{CS}$ is effectively restored for $T \ge T_{CS} > T_1$

$$C_{V_k} = C_{A_k} = C_{T_4} = C_{X_4}$$

 $C_{V_4} = C_{A_4} = C_{T_k} = C_{X_k}$

 $SU(2)_L \times SU(2)_R \times SU(2)_{CS}$

Design lattice QCD with physical (u,d,s,c) quarks

TWC, arXiv:1811.08095

For the $64^3 \times 64$ lattice, $M_{\pi}L \approx 3$, $M_{\pi} \approx 140$ MeV, $L \approx 4.3$ fm

Actions and Algorithms

- Quarks: optimal DWF [TWC, PRL 2003] with $N_s = 16$, $\lambda_{max}/\lambda_{min} = 6.20/0.05$. Gluons: plaquette gauge action at $\beta = 6/g^2 = (6.20, 6.18, 6.15)$
- For the one-flavor, use the Exact One-Flavor pseudofermion Action (EOFA) [Y.C. Chen & TWC, Phys. Lett. B738 (2014) 55; TWC, Phys. Lett. B744 (2015) 95]
 - For the 2-flavor, use the two-flavor algorithm for DWF. [TWC, T.H. Hsieh, Y.Y. Mao, Phys. Lett. B702 (2012) 131]

Gauge Ensembles of Nf=2+1+1 QCD

- Lattice sizes : $(64^3, 32^3) \times (64, 20, 16, 12, 10, 8, 6, 4)$
- Lattice spacings : (0.064, 0.068, 0.075) fm
- Spatial volume : $L^3 > (4 \text{ fm})^3$, $M_{\pi}L > 3$; $L^3 > (2 \text{ fm})^3$, $M_{\pi}L > 1.5$
- Number of gauge ensembles : $(1,1) \times 3 \times (8,7) = 45$
- Temperatures $T = (N_t a)^{-1}$: ~0-770 MeV
- Statistics : ~200 2000 configurations per ensemble
- The lattice spacings are determined by the Wilson flow, using $t^2 \langle E \rangle \Big|_{t=t_0} = 0.3$ with $\sqrt{t_0} = 0.1416(8)$ fm.
- The physical (u/d, s, c) masses are obtained by tuning their masses on the 64⁴ lattices such that the masses of the lowest-lying states of the time-correlation function of (ūγ₅d, sγ_is, cγ_ic) are in good agreement with π(140), φ(1020) and J/ψ(3097) respectively.

Gauge Ensembles of Nf=2+1+1 QCD (cont)

The 6 gauge ensembles for the meson correlators in this study.

$\beta=6/g^2$	$a[\mathrm{fm}]$	N_x	N_t	$m_{u/d}a$	$m_s a$	$m_c a$	$T[{\rm MeV}]$	$N_{\rm confs}$
6.20	0.0641	32	16	0.00125	0.0400	0.55000	192	583
6.18	0.0685	32	12	0.00180	0.0580	0.62600	240	781
6.20	0.0641	32	10	0.00125	0.0400	0.55000	307	358
6.20	0.0641	32	8	0.00125	0.0400	0.55000	384	468
6.20	0.0641	32	6	0.00125	0.0400	0.55000	512	431
6.20	0.0641	32	4	0.00125	0.0400	0.55000	768	991

The Temporal t-Correlators of $\overline{u}d$ Mesons

 $C_{V_k} = C_{A_k} \implies SU(2)_L \times SU(2)_R$ is effectively restored. $C_S = C_P$ and $C_{T_k} = C_{X_k} \implies U(1)_A$ is effectively restored.

The Temporal t-Correlators of $\overline{u}d$ Mesons (cont)

As *T* is increased from $190 \rightarrow 240 \rightarrow 310$ MeV, multiplets $\{V_k, A_k\}$ and $\{T_k, X_k\}$ are converging to form a single multiplet $\{V_k, A_k, T_k, X_k\}$ \Rightarrow The emergence of $SU(2)_{CS}$ chiral-spin symmetry. 2022/09/16

Comparison with the t-Correlators of Free Quarks

Comparing the meson *t*-correlators with those computed with free quark propagators on the same lattice and the same u/d mass, it shows that the u/d quarks in *QCD* have NOT deconfined at $T \approx 310$ MeV, and the existence of meson-like objects bounded by the chromoelectric fields.

The Symmetry Breaking Parameters for t-Correlators

To measure the breaking of $U(1)_A$ chiral sym :

$$\kappa_{PS}(t) = 1 - \frac{C_S(t)}{C_P(t)}, \quad n_t > 1$$

 $\kappa_{TX}(t) = 1 - \frac{C_{X_1}(t)}{C_{T_1}(t)}, \quad n_t > 1$

To measure the breaking of $SU(2)_L \times SU(2)_R$ chiral sym :

$$\kappa_{VA}(t) = 1 - \frac{C_{A_1}(t)}{C_{V_1}(t)}, \quad n_t > 1$$

To measure the breaking of $SU(2)_{CS}$ chiral-spin sym :

$$\kappa_{AT}(t) = \frac{C_{A_1}(t)}{C_{T_1}(t)} - 1, \quad n_t > 1$$

The Symmetry Breaking Parameters for t-Correlators (cont)

To measure the splitting in the $SU(2)_{CS}$ multiplet $M_1 = \{A_k, V_k, T_k, X_k\}$ relative to the distance between M_1 and $M_0 = \{P, S\}$:

$$\kappa(t) = \frac{|C_{A_1}(t) - C_{T_1}(t)|}{|C_1(t) - C_0(t)|}$$

$$C_0(t) \equiv \frac{1}{2} [C_P(t) + C_S(t)]$$

$$C_1(t) \equiv \frac{1}{4} [C_{V_1}(t) + C_{A_1}(t) + C_{T_1}(t) + C_{X_1}(t)]$$

If $\kappa_{AT}(t) < 1$ and $\kappa(t) > 1$, the $SU(2)_{CS}$ multiplet M_1 converges with M_0 and they form a single multiplet, then the $SU(2)_{CS}$ chiral-spin sym. is washed away. This occurs for $T > T_s > 770$ MeV in $N_f = 2 + 1 + 1$ QCD.

The Symmetry Breaking Parameters for t-Correlators (cont)

0.5

The Spatial z-Correlators of $\overline{u}d$ Mesons

The Spatial z-Correlators of $\overline{u}d$ Mesons (cont)

As *T* is increased from $190 \rightarrow 240 \rightarrow 310 \rightarrow 385$ MeV, the emergence of $SU(2)_{CS}$ multiplets $\{V_1, V_2, A_1, A_2, T_4, X_4\}$ and $\{V_4, A_4, T_1, T_2, X_1, X_2\}$ are getting more and more pronounced. \Rightarrow The emergence of $SU(2)_{CS}$ chiral-spin symmetry. 2022/09/16

The Spatial z-Correlators of $\overline{u}d$ Mesons (cont)

As T is increased from $385 \rightarrow 510 \rightarrow 770$ MeV, the $SU(2)_{CS}$ multiplet $\{V_1, V_2, A_1, A_2, T_4, X_4\}$ are converging with $\{P, S\}$. \Rightarrow The $SU(2)_{CS}$ chiral-spin symmetry will be washed away for $T > T_s > 770$ MeV, and only the U(1)_A × SU(2)_L × SU(2)_R remains. 2022/09/16

The Symmetry Breaking Parameters for z-Correlators

At T = 193 MeV, $\kappa_{PS} < 0.05(3)$ indicates that $U(1)_A$ is slightly broken in {*P*, *S*} channel, while $\kappa_{TX} < 8.5(4.5) \times 10^{-3}$ seems to suggest that $U(1)_A$ is effectively restored in $\{T_1, X_1\}$ channel. 2022/09/16 T.W. Chiu, Symmetries in High T QCD 29

The Symmetry Breaking Parameters for z-Correlators (cont)

Even at $T \approx 770$ MeV, the $SU(2)_{CS}$ is still a rather approximate sym. comparing with the $U(1)_A \times SU(2)_L \times SU(2)_R$ chiral symmetry.

Comparison with the z-Correlators of Free Quarks

Even at $T \approx 770$ MeV, the meson *z*-correlators in $N_f = 2 + 1 + 1$ *QCD* are still quite different from those of the free quarks. This implies that quarks in *QCD* are not deconfined at such high *T* and the meson-like objects could be predominantly bounded by the chromoelectric fields. 2022/09/16 T.W. Chiu, Symmetries in High T QCD 31

Concluding Remarks

- From the symmetries of the $\overline{u}d$ meson correlators in $N_f = 2+1+1$ *QCD* at the physical point for $T \approx 190-770$ MeV, the $SU(2)_L \times SU(2)_R$ chiral symmetry is restored for $T \ge 190$ MeV, but $U(1)_A$ seems to be restored for $T > T_1 > 190$ MeV, in the (P, S) channel.
- Besides the U(1)_A×SU(2)_L×SU(2)_R chiral symmetry, an approximate SU(2)_{CS} chiral-spin sym. emerges for T ≈ 240-770 MeV ≈ (1.6-5.1)T_c. The emergence of SU(2)_{CS} suggests the possible existence of hadron-like objects which are predominantly bounded by the chromoelectric field into color singlets.
- For $T \approx 190-770$ MeV, the $\overline{u}d$ meson correlators in $N_f = 2+1+1$ QCD are quite different from those of the free quarks. This implies that u/d quarks in QCD are not yet deconfined at $T \approx 770$ MeV, consistent with the emergence of $SU(2)_{CS}$ of chiral-spin symmetry. 2022/09/16 TW. Chiu, Symmetries in High T QCD 32

Acknowledgement

A Member of NARLabs National Center for **High-performance** Computing

National Taiwan University