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Introduction 
• Distribution amplitude (DA) is nonpert

fundamental input to collinear factorization 
for high-energy exclusive QCD processes

• Tremendous efforts devoted to hadron DAs:
• Lattice, sum rules limited to first few moments
• Quasi-correlation allows access to entire x 

range, but not reliable near endpoints of x
• Solutions for DAs from Dyson-Schwinger 

equations depend on kernels
• Global fits rely on theo and  exp precisions
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Challenge: x dependence
• Even all moments known, can reconstruct x 

dependence of DA?

• Gegenbauer coefficients vs moments
huge coefficients !
theoretical or roundoff errors
can be greatly amplified 
highly nontrivial task



ill-posed problem
• Derived up to 10th moments in QSR

• Inverted to Gegenbauer coefficients

• Unrealistic fluctuating DA 
• Eventually, fit DA                                         

parametrization to moments

bad convergence

Zhong et al. 
2102.03989

good convergence



Goals 
• Develop analytical nonpert framework that 

gives all moments of DA --- dispersive 
approach

• Determine DA in entire x range 
unambiguously and reliably --- Tikhonov 
regularization

• Compatible with QCD evolution: DA solved at 
a scale and DA solved at another scale obey 
known evolution  

• Precision can be improved systematically



Ideas only

consider correlator



Dispersive integral
• For analytical function

• Naive parametrization                                                    
based on quark-hadron duality

contribution
from large 
circle 
assumed 
negligible 

branch cut caused by 
physical intermediate
states due to time-like

s

contain resonant
nonpert contribution

from excited states

threshold not greater
than excited mass squared

s

deep
Euclidean



Conventional sum rules
• Calculate correlator at       via OPE directly

• Equate two calculations

• Perturbative (condensate) piece decreases 
(increases) with n; OPE deteriorates with n

• Enlarge Borel mass M to suppress latter;                   
diminishes with M for threshold       < excited 
states, otherwise more resonances

n-dependent

Borel transform

condensates,
higher-power



Quark-hadron duality
• Reason why QSR limited to few moments 
• Weakness of conventional QSR originates from 

assumption of quark-hadron duality
• Our spectral density along branching cut

• Last term unknown, smooth function, may not 
be equal to perturbative piece in OPE 

• Solve it directly, can go for all moments 

resonance excited state contribution



But how?
• Typical Fredholm integral equation

• Discretize integral equation usually

• Rows Mij and M(i+1)j become almost identical 
and matrix M becomes singular quickly for 
fine meshes, solution diverges 

spectral density, unknown

OPE input
notoriously 
difficult to solve

inputunknowns
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Resolution 
• Suppose         decreases quickly enough
• Expansion into powers of 1/x justified

• Suppose          can be expanded
• Decompose

• Orthogonality  

generalized
Laguerre
polynomials

depend on           at 

true for OPE

Azizi et al, 2010



Inverse matrix method
• Equate coefficients of             on two sides

• Solution                       , easy by using Math
• True solution can be approached by increasing 

N, before           diverges, stability in N
• Additional polynomial gives              correction, 

beyond considered precision

matrix

unknown
input

due to orthogonality

N=15~20
usually



Gegenbauer coefficients
• To get x dependence, work on dispersion 

relations for Gegenbauer coefficients directly
• Linearly combine OPE inputs for moments into 

those for Gegenbauer coefficients

• Solutions to                    diverge 
• Employ Tikhonov regularization
• Freedom to choose H, set                      

search for solutions
insensitive to 
parameter

V more singular than U(=M)

unknown



Test with Mock data
• Consider sample DA and continuum functions

• Mock data for input

• Comparison with true solution

our solution 1, 0.2686,  0.1159, 0.0642,  0.0417, 0.0300,  0.0232

1, 0.2001, -0.1496, 0.1119, 0.0306, -0.0233, 0.2339
but 
Gegenbauer

pion mass



Solutions for Gegenbauer
• Solutions stable as N>13, oscillate as N>17

• Continuum functions
• First two functions                                              

reproduced exactly

input DA

solutionN=16 N=17

1% of a2

without
regularization



Add noise
• Enhance an element in input B by 0.05%
• Solution for x dependence of DA without 

Tikhonov regularization goes out of control 
completely

• ill-pose nature



Solution under noise
• Implement Tikhonov regularization, shape of 

DA reproduced reliably  

stability in 



Real case: pion DA
• Condensate inputs in OPE

• Triple gluon condensate from Zhong et al gives 
no solution, adopt

Narison 2010

evolution



Results 
• Moments

• Can get all moments in principle
• Corresponding Gegenbauer coefficients

• Solution with Tikhonov regularization 

bad convergence

good convergence

from HOPE 2022 



x dependence
• Sum over 18 Gegenbauer coefficients

• Fit to parametrization

overlap 
completely, stability

Hua et al 2021
from quasi-correlator

from variation of 



Summary 
• Have developed analytical nonpert framework 

that gives all moments of DA
• Have determined DA in entire x range 

unambiguously and reliably
• Compatible with QCD evolution: DA solved at 

a scale and DA solved at another scale obey 
known evolution  

• Precision can be improved systematically by 
including subleading contributions to OPE



Details will be presented 
at NYCU on Oct. 11
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