Spectroscopy of chimera baryons on Sp （4）lattice gauge theory 2022．09．26 TQCD workshop＠Academia Sinica

Ho Hsiao a．k．a Paul
Supervisor：C．－J．David Lin
National Yang－Ming Chiao－Tung University（NYCU），Taiwan

陽明交大
N Y C U

Collaboration

Swansea University Prifysgol Abertawe

Ed Bennett, Biagio Lucini, Michele Mesiti, Maurizio Piai

Jong-Wan Lee, Deog Ki Hong

부산대학교
PUSAN NATIONAL UNIVERSITY

쁜 UNIVERSITY OF PLYMOUTH

Davide Vadacchino

Numerical calculations are accomplished by arXiv:0805.2058 modifying the HiRep code.

응 repository: https://github.com/sa2c/HiRep

Outline

- Introduction:
- $\operatorname{Sp}(4)$ gauge theory: A Composite Higgs model
- Chimera baryon operators
- Preliminary results
- Projections
- Mass hierarchy of chimera baryons
- $m_{p s}^{(f)}$ massless limit
- Summary

Composite Higgs Models

Name	Gauge group	ψ	χ	Baryon type
M1	$S O(7)$	$5 \times \mathbf{F}$	$6 \times$ Spin	$\psi \chi \chi$
M2	$S O(9)$	$5 \times \mathbf{F}$	$6 \times$ Spin	$\psi \chi \chi$
M3	$S O(7)$	$5 \times$ Spin	$6 \times \mathbf{F}$	$\psi \psi \chi$
M4	$S O(9)$	$5 \times$ Spin	$6 \times \mathbf{F}$	$\psi \psi \chi$
M5	$S p(4)$	$5 \times \mathbf{A}_{2}$	$6 \times \mathbf{F}$	$\psi \chi \chi$
M6	$S U(4)$	$5 \times \mathbf{A}_{2}$	$3 \times(\mathbf{F}, \overline{\mathbf{F}})$	$\psi \chi \chi$
M7	$S O(10)$	$5 \times \mathbf{F}$	$3 \times(\mathbf{S p i n}, \overline{\mathbf{S p i n}})$	$\psi \chi \chi$
M8	$S p(4)$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_{2}$	$\psi \psi \chi$
M9	$S O(11)$	The minimal model Barnard et al, arXiv:1311.6562		$\psi \psi \chi$
M10	$S O(10)$			$\psi \psi \chi$
M11	$S U(4)$			$\psi \psi \chi$
M12	$S U(5)$	$4 \times(\mathbf{F}, \overline{\mathbf{F}})$	$3 \times\left(\mathbf{A}_{2}, \overline{\mathbf{A}_{2}}\right)$	$\psi \psi \chi, \psi \chi \chi$

D. Franzosi and G. Ferretti, arXiv:1905.08273

Our choice of model

- $\operatorname{Sp}(4)$ gauge theory with $2 \mathrm{~F}+3 \mathrm{AS}$ Dirac fermions
- Breaking pattern:
$4 \mathrm{~F}+6 \mathrm{AS} \underline{2}$ component Weyl fermions

$$
G / H=\underline{S U(4) \times S U(6)} / S p(4) \times S O(6)
$$

Enhanced global symmetry due to the (pseudo-) reality

- $\operatorname{SU}(4) / S p(4)$ gives 5 goldstone bosons.
- 4: SM Higgs doublet
- 1 : made heavy in model building
- $\mathrm{SU}(3)$ embedded in antisymmetric representation:

$$
S U(6) \rightarrow S O(6) \supset S U(3)
$$

$$
\text { QCD colour } \mathrm{SU}(3)
$$

Chimera Baryon

- Interpolating operators
$-\Lambda$ type: ${ }^{0}{ }_{\mathrm{CB}, \gamma^{5}}=\left(\bar{\psi}^{1 a} \gamma^{5} \psi^{2 b}\right) \Omega_{b c} \chi^{k c a}$ $J=1 / 2$
*top partner: mixing with top and generate m_{t}
- Σ type: ${ }^{0} \mathrm{CB}_{, \gamma^{\mu}}=\left(\bar{\psi}^{1 a} \gamma^{\mu} \psi^{2 b}\right) \Omega_{b c} \chi^{k c a}$

Chimera Baryon

- Spin projector for Σ-type baryon:

$$
\begin{aligned}
& \left(P^{3 / 2}\right)^{i j}=\delta^{i j}-\frac{1}{3} \gamma^{i} \gamma^{j} \\
& \left(P^{1 / 2}\right)^{i j}=\frac{1}{3} \gamma^{i} \gamma^{j}
\end{aligned}
$$

- Two-point function

$$
\begin{aligned}
& C_{i j}(t)=\sum_{\vec{x}}\left\langle\mathcal{O}_{\mathrm{CB}}^{i}(x) \overline{\mathcal{O}}^{j} \mathrm{CB}(0)\right\rangle \text { with } \mathcal{O}_{C B}^{i}=\left(\bar{\psi} \gamma^{i} \psi\right) \chi \\
& \rightarrow C_{\Sigma}^{1 / 2}(t)=\operatorname{Tr}\left[\left(P^{1 / 2}\right)^{i j} C_{j k}(t)\right]
\end{aligned}
$$

Chimera Baryon

- Parity projection

$$
\begin{aligned}
C_{\mathrm{CB}}(t) & =\sum_{\vec{x}}\left\langle\widehat{O}_{\mathrm{CB}}(x) \overline{\mathcal{O}} \mathrm{CB}(0)\right\rangle \\
& \rightarrow P_{e}\left[c_{e} e^{-m_{e} t}+c_{o} e^{-m_{o}(T-t)}\right]-P_{o}\left[c_{o} e^{-m_{o} t}+c_{e} e^{-m_{e}(T-t)}\right]
\end{aligned}
$$

Projector:

$$
P_{e o}=\frac{1}{2}\left(1 \pm \gamma^{0}\right)
$$

Study Plan

- Quenched fundamental and antisymmetric fermions arXiv:1912.06505
- $N_{f}=2$ dynamical fundamental fermions
- $n_{f}=3$ dynamical antisymmetric fermions
- Fully dynamical 2F +3 AS fermions
- Chimera baryon (quenched studies first)
- 4-fermion operator matrix elements (relevant to generating Higgs mass)

Preliminary results

Preliminary results Projection-Parity

The log plot of the chimera baryon correlators (left) and their effective mass plot (right) with the parity projection obtained with quenched approximation.

Preliminary results
 Projection-Spin

Comparison of effective mass plot between two spin projected states and the state without spin projection.

Preliminary results Mass hierarchy

Effective mass plot of chimera baryons calculated with different F bare masses $m_{0}^{(f)}=-0.6$ (left) and $m_{0}^{(f)}=-0.69$ (right) at fixed AS bare mass $m_{0}^{(a s)}=-0.81$.
The lattice size is 60×48^{3} with $\beta=8.0$.

Preliminary results Mass hierarchy

Mass ratios calculated with different bare masses on a 48×24^{3} and $\beta=7.62$ lattice.

Preliminary results

 $m_{p s}^{(f)}$ Massless limit

$\mathbf{a m}_{\mathbf{0}}$	$\mathbf{- 0 . 8}$	$\mathbf{- 0 . 9}$	$\mathbf{- 0 . 9 5}$	$\mathbf{- 1 . 0}$	$\mathbf{- 1 . 0 5}$
$\chi^{2} /$ d.o.f.	0.12	0.03	0.36	0.97	1.2

Summary

- Chimera baryons
- Λ : Top partner in composite Higgs model
- Σ and Σ^{*} with different spin
- Projection
- Spin
- Parity
- The mass hierarchy of chimera baryons -_ model building
- Exploratory spectrum of chimera baryon at the $m_{p s}^{(f)}$ massless limit as a guide for fully dynamical study.

END

