

1

Exclusive Measurements at COMPASS

TQCD Meeting, Academia Sinica September 16, 2022

Po-Ju Lin Institute of Physics, Academia Sinica

Multi-dimensional Partonic Structures

- The COMPASS Experiment
- Deeply Virtual Compton Scattering (DVCS)
- Hard Exclusive Meson Production (HEMP)
- Summary

COMPASS Experiment

Versatile facility with hadron $(\pi^{\pm}, K^{\pm}, p \dots)$ & lepton (polarized μ^{\pm}) beams of energy 100 to 200 GeV

6 6

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Muon Beams

- $\succ \mu^+ \& \mu^-$ with opposite polarisation
- > About \pm 80% polarisation
- Momentum: 160 GeV/c

Two-stage, large angle, and wide momentum range spectrometer. PID including hadron absorbers, RICH, HCALs, ECALs, and muon filters.

NIM A 577 (2007) & NIM A 779 (2015) 69

Two-stage, large angle, and wide momentum range spectrometer. PID including hadron absorbers, RICH, HCALs, ECALs, and muon filters.

6

Two-stage, large angle, and wide momentum range spectrometer. PID including hadron absorbers, RICH, HCALs, ECALs, and muon filters.

NIM A 577 (2007) & NIM A 779 (2015) 69

Two-stage, large angle, and wide momentum range spectrometer. PID including hadron absorbers, RICH, HCALs, ECALs, and muon filters.

NIM A 577 (2007) & NIM A 779 (2015) 69

FCA .

IT THE

ad make in the little

ECALO

• 2012 pilot run with 4-week data taking

• 2016-17 dedicated run. 2 x 6 months.

Deeply Virtual Compton Scattering @ COMPASS

DVCS at COMPASS

12

DVCS

DVCS: $l + p \rightarrow l' + p' + \gamma$

To experimentally access the information about Generalized Parton Distributions (GPDs), DVCS is regarded as the golden channel and its interference with the well-understood Bethe-Heitler process gives access to more info.

The variables measured in the experiment:

$$E_{\ell}, Q^2, x_{Bj} \sim 2\xi / (1+\xi),$$

t (or $\theta_{\gamma^*\gamma}$) and ϕ ($\ell\ell$ plane/ $\gamma\gamma^*$ plane)

DVCS

COMPASS

DVCS: $l + p \rightarrow l' + p' + \gamma$

To experimentally access the information about Generalized Parton Distributions (GPDs), DVCS is regarded as the golden channel and its interference with the well-understood Bethe-Heitler process gives access to more info.

The variables measured in the experiment:

$$E_{\ell}, Q^2, x_{Bj} \sim 2\xi / (1+\xi),$$

t (or $\theta_{\gamma^*\gamma}$) and ϕ ($\ell\ell'$ plane/ $\gamma\gamma^*$ plane)

DVCS

- The GPDs depend on the following variables:
 x: average longitudinal momentum frac.
 - ξ : longitudinal momentum diff.
 - t: four momentum transfer (correlated to b_{\perp} via Fourier transform)

Q²: virtuality of γ^*

Sensible to 4 GPDs, with LH_2 target and small x_B coverage \rightarrow focuses on **H** at COMPASS

Transverse Imaging and Pressure Distribution

Azimuthal Dependence of BH & DVCS

Azimuthal Dependence of BH & DVCS

Azimuthal Dependence of BH & DVCS

COMPASS 2016 Preliminary Results

$$M^{2}_{undet} = (k + p - k' - q' - p')^{2}$$

COMPASS 2016 Preliminary Results

> Main background of exclusive single photon events: π^0 decay

> Visible (both γ detected) – subtracted

A high-energy DVCS photon candidate is combined with all detected photons with energies lower than the DVCS threshold: (4,5) GeV in Ecal (0,1) respectively

> Invisible (one γ lost) – estimated by MC

- Semi-inclusive LEPTO 6.1
- Exclusive HEPGEN π^0 (GK model)

The sum of LEPTO and HEPGEN contributions is normalized to the π^0 peak in $M_{\gamma\gamma}$ of the real data

Visible π^0 candidates

COMPASS 2016 Preliminary Results

Tranverse extension of partons – 2016 data

 \succ The transverse-size evolution as a function of $x_{Bi} \rightarrow$ Expect at least 3 x_{Bi} bins from 2016-17 data

Beam Charge-spin Difference

Hard Exclusive Meson Production @ COMPASS

GPDs in Hard Exclusive Meson Production

(*x-*ζ)*P*

(*x*-ζ)*P*

P

4 chiral-even GPDs: helicity of parton unchanged

 $H^q(x, \xi, t)$ $E^q(x, \xi, t)$ → Vector Meson $\widetilde{H}^q(x, \xi, t)$ $\widetilde{E}^q(x, \xi, t)$ → Pseudo-Scalar Meson

+ 4 chiral-odd or transversity GPDs: helicity of parton changed (not possible in DVCS)

$$\begin{array}{ll} \mathbf{H}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \mathbf{E}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \\ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \widetilde{\mathbf{E}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) & \overline{\mathbf{E}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathsf{t}) \end{array} & \overline{\mathbf{E}}_{\mathsf{T}}^{q} = \mathbf{2} \ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q} + \mathbf{E}_{\mathsf{T}}^{q} \end{array}$$

- Universality of GPDs, quark flavor filter
- Ability to probe the chiral-odd GPDs.
- Additional non-perturbative term from meson wave function
- In addition to nuclear structure, provide insights into reaction mechanism

Exclusive π^0 Production on Unpolarized Proton

$$\mu \mathbf{p} \rightarrow \mu \pi^{0} \mathbf{p} \qquad \frac{d^{2}\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

$$\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re} \left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\}$$
Leading twist expected be dominant
But measured as \approx only a few % of $\frac{d\sigma_T}{dt}$

The other contributions arise from coupling between chiral-odd (quark helicity flip) GPDs to the twist-3 pion amplitude

$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2 \left(|\langle H_T \rangle|\right)^2 - \frac{t'}{8m^2} \left(|\langle \bar{E}_T \rangle|\right)^2 \right] \right]$$
$$\frac{\sigma_{LT}}{dt} = \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_\pi}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[\langle H_T \rangle\right] \langle \tilde{E} \rangle \right]$$
$$\frac{\sigma_{TT}}{dt} = \frac{4\pi\alpha}{k'} \frac{\mu_\pi^2}{Q^8} \frac{t'}{16m^2} \left[\langle \bar{E}_T \rangle\right]^2$$

 $[\]epsilon$: degree of longitudinal polarization

Exclusive π^0 Production on Unpolarized Proton

Exclusive π^0 Production on Unpolarized Proton

$$\mu \mathbf{p} \rightarrow \mu \pi^{0} \mathbf{p} \qquad \frac{d^{2}\sigma}{dt d\phi_{\pi}} = \frac{1}{2\pi} \left[\left(\frac{d\sigma_{T}}{dt} + \epsilon \frac{d\sigma_{L}}{dt} \right) + \epsilon \cos 2\phi_{\pi} \frac{d\sigma_{TT}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \cos \phi_{\pi} \frac{d\sigma_{LT}}{dt} \right]$$

$$\frac{d\sigma_L}{dt} = \frac{4\pi\alpha}{k'} \frac{1}{Q^6} \left\{ \left(1 - \xi^2\right) \left| \langle \tilde{H} \rangle \right|^2 - 2\xi^2 \operatorname{Re} \left[\langle \tilde{H} \rangle^* \langle \tilde{E} \rangle \right] - \frac{t'}{4m^2} \xi^2 \left| \langle \tilde{E} \rangle \right|^2 \right\}$$
Leading twist expected be dominant
But measured as \approx only a few % of $\frac{d\sigma_T}{dt}$

The other contributions arise from coupling between chiral-odd (quark helicity flip) GPDs to the twist-3 pion amplitude

$$\frac{d\sigma_T}{dt} = \frac{4\pi\alpha}{2k'} \frac{\mu_\pi^2}{Q^8} \left[\left(1 - \xi^2 \left(|\langle H_T \rangle|\right)^2 - \frac{t'}{8m^2} \left|\langle \bar{E}_T \rangle\right|\right)^2 \right]$$
$$\frac{\sigma_{LT}}{dt} = \frac{4\pi\alpha}{\sqrt{2}k'} \frac{\mu_\pi}{Q^7} \xi \sqrt{1 - \xi^2} \frac{\sqrt{-t'}}{2m} \operatorname{Re}\left[\langle H_T \rangle\right] \langle \tilde{E} \rangle \right]$$
$$\frac{\sigma_{TT}}{dt} = \frac{4\pi\alpha}{k'} \frac{\mu_\pi^2}{Q^8} \frac{t'}{16m^2} \left[\langle \bar{E}_T \rangle\right]^2$$

A large contribution of \overline{E}_T can be identified: $\succ \sigma_{TT}$ measurement \succ The dip at small |t| of σ_T

2012 Exclusive π^0 Prod. on Unpolarized Proton

COMPASS, **PLB** 805 (2020) 135454

2016 Exclusive π^0 Prod. on Unpolarized Proton

➢ Preliminary results from 2016 data at low ξ (⟨x_B⟩ = 0.0096), with statistics about 2.3 times larger than the published 2012 pilot run.
 ➢ New inputs for phenomenological models.

➤ The whole collected 2016/2017 statistics ~ 9 times larger than the 2012 data → heading towards publication using the whole dataset.

Exclusive $\boldsymbol{\omega}$ Production on Unpolarized Proton

Experimental angular distributions

 $\mathcal{W}^{U+L}(\Phi,\phi,\cos\Theta) = \mathcal{W}^{U}(\Phi,\phi,\cos\Theta) + P_b\mathcal{W}^{L}(\Phi,\phi,\cos\Theta)$

15 unpolarized SDMEs in \mathcal{W}^U and 8 polarized in \mathcal{W}^L

$$\begin{split} \mathcal{W}^{U}(\Phi,\phi,\cos\Theta) &= \frac{3}{8\pi^{2}} \Bigg[\frac{1}{2} (1-r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04}-1)\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{04}\}\sin 2\Theta\cos\phi - r_{1-1}^{04}\sin^{2}\Theta\cos2\phi \right] \\ &-\epsilon\cos 2\Phi \Big(r_{11}^{1}\sin^{2}\Theta + r_{00}^{1}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{1}\}\sin 2\Theta\cos\phi - r_{1-1}^{1}\sin^{2}\Theta\cos2\phi \Big) \\ &-\epsilon\sin 2\Phi \Big(\sqrt{2}\text{Im}\{r_{10}^{2}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{2}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+\sqrt{2\epsilon(1+\epsilon)}\cos\Phi \Big(r_{11}^{5}\sin^{2}\Theta + r_{00}^{5}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{5}\}\sin 2\Theta\cos\phi - r_{1-1}^{5}\sin^{2}\Theta\cos2\phi \Big) \\ &+\sqrt{2\epsilon(1+\epsilon)}\sin\Phi \Big(\sqrt{2}\text{Im}\{r_{10}^{6}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{6}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+\sqrt{2\epsilon(1+\epsilon)}\sin\Phi \Big(\sqrt{2}\text{Im}\{r_{10}^{3}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{3}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(\sqrt{2}\text{Im}\{r_{10}^{7}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{7}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(\sqrt{2}\text{Im}\{r_{10}^{7}\}\sin 2\Theta\sin\phi + \text{Im}\{r_{1-1}^{7}\}\sin^{2}\Theta\sin2\phi \Big) \\ &+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi \Big(r_{11}^{8}\sin^{2}\Theta + r_{00}^{8}\cos^{2}\Theta - \sqrt{2}\text{Re}\{r_{10}^{8}\}\sin 2\Theta\cos\phi - r_{1-1}^{8}\sin^{2}\Theta\cos2\phi \Big) \\ \end{aligned}$$

2012 Exclusive $\boldsymbol{\omega}$ Prod. on Unpolarized Proton

2012 Exclusive ρ^0 Prod. on Unpolarized Proton

NPE-to-UPE Asymmetry

Summary and Outlook

DVCS cross sections with polarized μ + and μ -

- Beam charge-spin sum $\rightarrow Im \mathcal{H}(\xi,t) \rightarrow Transverse$ extension of partons as a function of x_{Bi}
- Beam charge-spin difference $\rightarrow \operatorname{Re}\mathcal{H}(\xi,t) \rightarrow D$ -term, pressure distribution

HEMP of π^0 , ρ , ω , ϕ , J/ ψ

- Cross setion of π^0 , SDME of $\rho \& \omega \rightarrow$ Transversity GPDs \rightarrow Flavor Decomposition
- ϕ , J/ $\psi \rightarrow$ Gluon GPDs

On-going analysis on 2016-17 data.

Backup Slides

Exclusive ρ^0 Production on Unpolarized Proton

COMPASS++/AMBER

A new QCD facility at the M2 beam line of the CERN SPS

- Unique beam line with polarised

 <u>µ[±]</u> and high-intensity Pion beam
- Possible high-intensity antiproton and Kaon beams, provided by RFseparation technique
- With upgraded apparatus

Proposed physics goals

Proton Radius Meson PDF – gluon PDF Proton spin structure 3D imaging (TMDs and GPDs) Hadron spectroscopy Anti-matter cross section

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp elastic scattering	Precision proton-radius measurement	100	4 · 10 ⁶	100	μ^{\pm}	high- pressure H2	2022 1 year	active TPC, SciFi trigger, silicon veto,
Hard exclusive reactions	GPD E	160	2 · 107	10	μ^{\pm}	NH_3^\uparrow	2022 2 years	recoil silicon, modified PT magnet
Input for Dark Matter Search	p production cross section	20-280	$5 \cdot 10^5$	25	р	LH2, LHe	2022 1 month	LHe target
p-induced Spectroscopy	Heavy quark exotics	12, 20	5 · 10 ⁷	25	P	LH2	2022 2 years	target spectr.: tracking, calorimetry
Drell-Yan	Pion PDFs	190	7 · 10 ⁷	25	π^{\pm}	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	NH [↑] ₃ , C/W	2026 2-3 years	"active absorber", vertex det.
Primakoff (RF)	Kaon polarisa- bility & pion life time	~100	5 · 106	>10	<u>K</u> -	Ni	non-exclusive 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5 · 106	10-100	$rac{K^{\pm}}{\pi^{\pm}}$	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 - 106	25	<i>K</i> -	LH2	2026 1 year	recoil TOF, forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5.106	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year	39

Possible RPD for COMPASS++/AMBER

A recoil proton detector (RPD) is mandatory to ensure the exclusivity. A Silicon detector is included *between* the target surrounded by the modified MW cavity *and* the polarizing magnet

A technology developed at JINR for NICA for the BM@N experiment

No possibility for ToF \rightarrow PID of p/ π with dE/dx Momentum and trajectory measurments $|t|_{min} \sim 0.1 \text{ GeV}$

ϕ Dep. of BH+DVCS with Unpol Target

$$\frac{d^{4}\sigma(\ell p \rightarrow \ell p\gamma)}{dx_{B}dQ^{2}d|t|d\phi} = d\sigma^{BH} + \left(d\sigma^{DVCS}_{unpol} + P_{\ell} d\sigma^{DVCS}_{pol}\right) + \left(e_{\ell} \operatorname{Re} I + e_{\ell}P_{\ell} \operatorname{Im} I\right) \qquad \gamma^{*} \gamma_{u+z} + \zeta_{v+z} + \zeta_{v+$$