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nucleosynthesis

2n + 2p → α   

4He(αn,γ)9Be   
4He(αα,γ)12C   

…

seeds (A = 50 ~100)

n’s + seed → heavy (A=100 ~ 200)
r-process

neutron
star

heating
region

νe + p ⇌ n + e+   
_νe + n ⇌ p + e-   

cooling
region

Neutrinos in Supernovae

• ~1053 ergs, 1058 
neutrinos in ~10 
seconds

• All neutrino species, 
10~30 MeV

• Dominate 
energetics  

• Influence 
nucleosynthesis
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Neutrino Mixing
weak flavor states vacuum mass eigenstates
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Vacuum Oscillations

|⇥1⇥ = cos �v|⇥e⇥+ sin �v|⇥µ⇥ with mass m1

|⇥2⇥ = � sin �v|⇥e⇥+ cos �v|⇥µ⇥ with mass m2

neutrino mass eigenstates ≠ weak interaction states

vacuum mixing angle

neutrino survival probability
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Matter Effect
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Dense Neutrino Gas

neutrino sphere 

νk

νq
νp



Mean-Field Approximation
Flavor density matrix

[ρp(t, r)]αβ = ∫ eiq⋅r⟨Ψ(t) | ̂a†
α(p − q/2) ̂aβ(p + q/2) |Ψ(t)⟩ d3q

(2π)3

ρ = [
fνe

S
S* fνx]

Beyond MF: See Roggero (Thursday) & Martin (Friday)

fνα
: occupation

S : coherence

Sigl & Raffelt (1993)



Flavor Transport
Equation of motion

H =
M

2

2E
+

p
2GF diag[ne, 0, 0] + H��

mass matrix

neutrino energy

electron density

ν-ν forward scattering 
(self-coupling)

H⌫⌫ =
p
2GF

Z
d3p0(1� v̂ · v̂0)(⇢p0 � ⇢̄p0)

(∂t + v̂ ⋅ ∇)ρ = − i[(, ρ]+) Collision 

Sigl & Raffelt (1993)



7D Problem

Coherent forward 
scattering outside neutrino 
sphere

ρp(t, r)



Bulb Model

Azimuthal symmetry around 
any radial direction

ρE,ϑ(r)



Numerical Results
Bulb model (late time)

cos#0 = 1
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Some Theories



ρ̄ ∝ [ 1 S̄
S̄* 0]ρ ∝ [ 1 S

S* 0]

Linear Stability Analysis
Homogeneous and isotropic gas

Electron flavor neutrinos and antineutrinos initially

• Normal modes  —> Collective oscillations ( ) 
•   —> Flavor instabilities

S, S̄ ∼ e−iΩt

Im(Ω) > 0
Banerjee+ (2011)

i [
·S
·̄
S] ≈ [−ω − αμ αμ

−μ ω + μ] [S
S̄] ω = Δm2/2E

α = nν̄ /nν
μ ∝ nν



Flavor Instabilities
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Collective Oscillation Wave

• Collective flavor oscillations are the collective wave modes in the 
neutrino gas with the dispersion relation .


•  —> Flavor instabilities.


• Slow oscillations occur on the distance scale of 1 km 
( ).


• Fast oscillations can occur on the distance scale of 1 cm 
( ), independent of the neutrino energies (Sawyer, 2016).


• Collective oscillations spontaneously break the spatial 
symmetries in the nonlinear regime.

Ω(K)

Im(Ω) > 0

∼ 10 MeV/Δm2
atm

∼ 1/GFnν

Sp(t, r) ∝ e−i(Ωt−K⋅r)

HD+ (2008) 
Izaguirre+ (2017)



Neutrino Flavor-Spin and Distribution
Aka flavor isospin and ELN distribution

[νe
νx][ ν̄x

−ν̄e]

E < 0 E > 0

HD+ (2005) 
Dasgupta+ (2009)

G(E, v̂) = {
fνe

− fνx
 if E > 0

fν̄x
− fν̄e

 if E < 0



Flavor Instability and Crossing

• Identical neutrino angular distribution: Slow flavor instability  
requires crossing in .


• Fast flavor instability requires crossing in .


• Mixing of the fast and slow instabilities?

G(E)

G(v̂)

G(E, v̂) = {
fνe

− fνx
 if E > 0

fν̄x
− fν̄e

 if E < 0

Dasgupta+ (2009) 
Izaguirre+ (2017) 

Airen+ (2018)



Flavor Crossing
1D axisymmetric neutrino gas

-1 +1

fνe fν̄e

+1-1

00

G ∼ ( fνe
− fν̄e

) − ( fνx
− fν̄x

)



Flavor Distribution Crossing
1D axisymmetric neutrino gas

vz

G

G4b
G3a

Martin+ (2020)



Convective Instability
1D axisymmetric neutrino gas
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Martin+ (2020)



Absolute Instability
1D axisymmetric neutrino gas
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Martin+ (2020)



Martin, Yi & HD (2020)

P
1 =

Re(ρex )
P

2 =
−

Im
(ρex )

P
3 =

(ρee −
ρxx )/2



Kinematic Decoherence

Richers+ (2021) 
Wu+ (2021)
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FIG. 2. Snapshots of flavor-diagonal components of direction integrated quantities in the fiducial 1D simulation. The three
columns show snapshots at the initial time, near the end of the linear growth phase, and the post-saturation phase, respectively.
The top row shows neutrino number density and the bottom row shows the flux in the x̂ direction. Blue, red, and gold solid
(dashed) curves show electron, muon, and tauon flavor (anti-)neutrinos, respectively. The abundances of all flavors are roughly
equal in the post-saturation state.
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FIG. 3. Snapshots of magnitude of flavor o↵-diagonal components of direction integrated quantities in the fiducial 1D simulation.
The three columns show snapshots at the initial time, near the end of the linear growth phase, and the post-saturation phase,
respectively. The top row shows neutrino number density and the bottom row shows the flux in the x̂ direction. Purple, green,
and orange solid (dashed) curves show eµ, e⌧ , and µ⌧ components for (anti-)neutrinos, respectively. Modes with wavelength
near that of the fastest growing mode dominate the linear evolution, but break up into a broad spectrum of wavelengths in the
post-saturation phase.

and antineutrinos (dashed curves) begin in the electron
flavor state (blue), and hence the electron neutrinos and
antineutrinos constitute essentially all of the number den-
sity. All neutrino flux is in the ±ẑ direction, so the x com-
ponent of the flux shown in the bottom panel at t = 0
is zero everywhere. The left column of Figures 3 and 4
show the magnitude and complex phase, respectively, of

the eµ (purple), e⌧ (green), and µ⌧ (orange) components
of the neutrino density. The perturbations are too small
to be visible in the top left panel of Figure 3. Although
the perturbations of the density matrix of each particle
individually are O(10�6), they average together to make
the perturbation of the x component of the flux factor
(bottom panel) much smaller than 10�6. The left panels



Effects of Collisions



Neutrino Halo
 neutral-current scatteringνN
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Collision and Fast Oscillations

modes then propagate towards a larger z (see snapshot at
t ¼ 2400), and the effects of fast conversions can reach the
free-streaming zone.
Discussion and conclusions.—Fast neutrino flavor con-

versions are possible near the SN core, where the angular
distributions of the ELN flux, i.e., the difference of the νe
and ν̄e fluxes, may harbor a crossing. This region is the
same in which neutrinos decouple from the matter, so that
they still feel residual collisions. We have studied this in a
simple one-dimensional model with two momentum
modes, which allows us to calculate effects of neutrino

flavor conversions and collisions in a consistent manner.
We find that for collision rates that are significantly
smaller than the neutrino potential, collisions create the
conditions for fast conversions but do not dampen them.
Unexpectedly, state-of-art SN simulations seem to suggest
that the neutrino potential indeed dominates over the
collisional rate in the SN core. Drawing the insights from
our model, this dominance implies that once fast conver-
sions are generated in the decoupling zone they will
propagate everywhere. With the possibility of such fast
conversions, the neutrino fluxes found by SN simulations,
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FIG. 4. Two beam model with Γνeð0Þ ¼ Γν̄eð0Þ ¼ 0.1 and μ ¼ 1. Evolution of forward and backward going mode occupations for νe
and ν̄e as a function of z for different representative times. Note the instability in the t ¼ 200 snapshot and that, except for a leading
transient, ρee approaches approximately the same equilibrium as in Fig. 3.
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later times and a different equilibrium is reached after a longer transient.
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mode occupations for νe and ν̄e, as a function of z for different representative times. Note the approach to equilibrium, followed by free
streaming in the right-most zone at late times.
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coupling 

νν

modes then propagate towards a larger z (see snapshot at
t ¼ 2400), and the effects of fast conversions can reach the
free-streaming zone.
Discussion and conclusions.—Fast neutrino flavor con-

versions are possible near the SN core, where the angular
distributions of the ELN flux, i.e., the difference of the νe
and ν̄e fluxes, may harbor a crossing. This region is the
same in which neutrinos decouple from the matter, so that
they still feel residual collisions. We have studied this in a
simple one-dimensional model with two momentum
modes, which allows us to calculate effects of neutrino

flavor conversions and collisions in a consistent manner.
We find that for collision rates that are significantly
smaller than the neutrino potential, collisions create the
conditions for fast conversions but do not dampen them.
Unexpectedly, state-of-art SN simulations seem to suggest
that the neutrino potential indeed dominates over the
collisional rate in the SN core. Drawing the insights from
our model, this dominance implies that once fast conver-
sions are generated in the decoupling zone they will
propagate everywhere. With the possibility of such fast
conversions, the neutrino fluxes found by SN simulations,
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Collision and Fast Oscillations
 neutral-current collisionsνN

t = 0
t = 100

t = 300
t = 500 ~ Γ−1

NC

Neutral-current  collisions tend to  
damp/destroy fast flavor instabilities

νN

Martin+ (2021)



Collision and Fast Oscillations
 neutral-current collisionsνN

Neutral-current  
collisions can also  
enhance fast flavor 

conversion?

νN
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Figure 3. Fast flavor conversion for the three bin neutrino model for cases A (left panel) and B (right panel) in the presence of
collisions. The conversion probability is shown for C = 1, 3, and 10 km�1 for case A and C = 1, 3, 10 and 30 km�1 for case B.
For both configurations, the no-collision case (C = 0 km�1) is plotted in gray to guide the eye. For case A, intermediate values
of C lead to an enhancement of flavor conversion and larger values of C are responsible for suppressing flavor conversion. On
the other hand, all configurations with C 6= 0 show a suppression of flavor conversion for case B.

A similar expression for the collision term holds for an-
tineutrinos, and it is also valid in the rotating frame.
We use the scripted C in Eq. (2) to denote the collision
term and the unscripted C to denote the parameter that
encapsulates the strength of the collision term.

The left panel of Fig. 3 shows the conversion proba-
bility for case A as a function of the distance. A clear
enhancement of flavor conversion is visible for moder-
ate values of C. Note that, comparing the solution with
C = 1 km�1 to the results of Fig. 2 of Ref. [29], our
results are in good qualitative agreement, but quantita-
tively they are not directly comparable because of the
three bin model adopted in this paper. For larger val-
ues of C, the enhancement of flavor conversion occurs on
shorter timescales; for C & 4.5 km�1, flavor conversion
is suppressed.

On the contrary, there is no enhancement of flavor con-
version for case B shown in the right panel of Fig. 3. For
this configuration, even the lowest value of C gives a sup-
pression of the initial flavor conversion probability; as C

is gradually increased to 30 km�1, the asymptotic value
of the conversion probability decreases gradually. As
C increases, the conversion probability reaches a steady
configuration at smaller distances.

In order to investigate the origin of the opposite e↵ect
of collisions on the survival probability for cases A and
B, we show in the Fig. 4 the conversion probability in
each of the three angular bins for cases A (left) and B
(right):

Pex(ui) =
1

2

✓
1 �

Pz(ui)

P0(ui)

◆
, (22)

where P0(ui) as a function of time is given by

P0(ui, t) = P0(ui, 0)e
�Ct+

�
1 � e

�Ct
�
P

j P0(uj , 0)�ujP
k �uk

.

(23)
A similar definition holds in the rotating frame.
The enhancement of the flavor conversion probabil-

ity in case A is due to the fact that flavor conversion
sweeps from one part of the angular distribution to an-
other, as shown in the left panel of Fig. 4. Flavor
conversion initially takes place in the bin centered on
u2 = 0.25 and then gradually moves to the bin centered
on u3 = 0.75. The u3 bin reaches its enhanced maxi-
mal value at ct ⇠ 0.45 km, where the total flavor con-
version probability also reaches its maximal and asymp-
totic value (see also the left panel of Fig. 3). Finally,
at ct > 0.5 km, conversions cease and collisions start to
dominate, equilibrating all angular bins. A similar trend
is observed in Refs. [29, 30] for continuous angular dis-
tributions.
For case B, the right panel of Fig. 4 shows that flavor

conversion is the largest in the bin centered on u3 = 0.75
throughout the simulation duration, and the conversion
probability of u3 is the largest at ct ⇠ 0 km before colli-
sions have had an impact. Beyond ct = 1 km, flavor oscil-
lation occurs with smaller amplitude, and collisions tend
to drive all bins towards the same Pex,S . Although it is
clear that flavor conversion does not remain localized to
one angular bin in case A, the mechanism responsible for
this e↵ect is not immediately obvious. One would expect
that flavor conversion primarily occurs close to the ELN
crossing [1] and, as the ELN crossing sweeps through the
angular distribution because of collisions, flavor conver-
sion could move along.

Shalgar & Tamborra (2021) 
Sasaki &Takiwaki (2021)   

Hansen+ (2022)



Collision and Fast Oscillations
Charged-current collisions

Charged-current collisions can induce 
collisional flavor instability 
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Isotropic collisional instability
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FIG. 1. Collisionally unstable evolution in an isotropic calcu-
lation: n⌫e (thick black curve), n⌫̄e (medium), n⌫x = n⌫̄x

(thin), and neutrino coherence density |PT |/2 (teal). For
comparison, virtually no flavor conversion or coherence de-
velopment takes place under collisionless conditions or when
� and �̄ are artificially equated.

equilibrium set by the composition of the environment;
�CC pushes the system toward kinetic equilibrium; and
�NC , because it leaves flavor coherence intact during in-

teractions, redistributes flavor states over momentum. In
an isotropic and monochromatic setting, �NC has no ef-
fect.

Decomposing the density matrix using ⇢ =
(P0 +P · �) /2, the equations of motion become
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where �P
± =

�
�P
e ± �P

x

�
/2. The antineutrino equation is

obtained by sending !B ! �!B and putting bars over
all rates and vectors except those in the factorP�P̄. The
matter potential � =

p
2GFne has been dropped because

it does not a↵ect stability. With the chosen convention,
µ =

p
2GF .

Although absorption and emission rates are flavor-
dependent, the emergence of instabilities is more trans-
parent (and not fundamentally changed) if we take
�AE
e = �AE

x . The total number densities of neutrinos and
antineutrinos are then conserved. Letting �P = �P

+ and
switching to the sum and di↵erence vectors S = P + P̄
and D = P� P̄, we have
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Subscript T indicates that only the part of the vector
transverse to the flavor axis is being considered. At this
point it begins to become clear how collisions might do
more than simply decohere flavor states: the �� �̄ terms
couple S and D to one another.

From here on we let � = �AE+�CC . Now suppose that
µ � !,�, �̄. For a system that does not support the bipo-
lar instability, the salient e↵ect of the oscillation terms is
to cause S andD to undergo synchronized motion around
B [17, 18]. In a dense matter background, the vectors re-
main close to the flavor axis and, to a first approximation,
the oscillation terms can simply be dropped. Assuming
that |(�� �̄)S| & |(�+ �̄)D|, we obtain

S̈T +
�+ �̄

2
ṠT �

✓
�� �̄

2

◆2

ST
⇠= 0. (5)

Solutions are exponential, and � 6= �̄ is required for one
of them to be growing.

An instability criterion follows from the assumption
that |(�� �̄)S| & |(�+ �̄)D|. In a situation with � > �̄

and n⌫e > n⌫̄e > n⌫x ⇡ n⌫̄x , instability is predicted for

R ⌘
n⌫̄e � n⌫̄x

n⌫e � n⌫x

& �̄

�
⌘ Rcrit. (6)

Numerical tests support the accuracy of this criterion.
As R decreases toward Rcrit, the time elapsed before in-
stability sets in grows longer. Below Rcrit the instability
has apparently vanished.
The system admits of another collisional instability.

Synchronization of S and D implies that

ḊT
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2
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DT , (7)

with the upper (lower) sign corresponding toR > 1 (R <

1). If R < 1 and �̄ > �, or if R > 1 and �̄ < �, then an
exponentially growing solution is possible, but it is less
likely to be of relevance to supernovae.
An illustrative calculation.—Figure 1 presents the nu-

merical solution of Eqs. (3) using parameters motivated
by realistic conditions inside a core-collapse supernova.
To be definite, the chosen values emulate those found

Johns (2021) 
Lin & HD (2022) 

Xiong+ (2022)



Summary

• A dense neutrino gas can experience collective flavor oscillations 
because of the  coupling.


• A crossing in the neutrino flavor distribution can produce flavor 
instabilities.


• Neutrino collisions can also induce/enhance flavor instabilities/
conversions. 


• Flavor oscillation waves are produced as the flavor instabilities 
grow out of the linear regime.


• Kinematic decoherence of the oscillation wave can lead to “flavor 
equilibrium”.
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