Neutrino oscillations
 in the multimessenger era

Luke Johns

NASA Einstein Fellow
UC Berkeley

The past \& potential of neutrino astronomy

The past \& potential of neutrino astronomy

The past \& potential of neutrino astronomy

Super-Kamiokande

The past \& potential of neutrino astronomy

Super-Kamiokande

The past \& potential of neutrino astronomy

Super-Kamiokande

The past \& potential of neutrino astronomy

Two quantum concepts will recur throughout this talk:

(non)adiabaticity \& (de)coherence

Solar neutrinos

The MSW effect

Bethe, Phys. Rev. Lett. (1986)

High energies: Adiabatic passage through an MSW resonance.
Low energies: Kinematic decoherence en route to Earth.

Survival probabilities of electron neutrinos

Borexino Collaboration, Nature (2018)

Solar neutrinos

The MSW effect

Bethe, Phys. Rev. Lett. (1986)

The oscillation problem in the Sun has essentially been solved.

High energies: Adiabatic passage through an MSW resonance.
Low energies: Kinematic decoherence en route to Earth.

Survival probabilities of electron neutrinos

Borexino Collaboration, Nature (2018)

High-energy neutrinos $\left(E_{v}>\mathrm{GeV}\right)$

The astrophysical sources of IceCube neutrinos are mysterious. Possible associations include:

* Blazars (e.g., TXS 0506+056)
* The Seyfert II galaxy NGC 1068
* Tidal disruption events

High-energy neutrinos $\left(E_{v}>\mathrm{GeV}\right)$

The astrophysical sources of IceCube neutrinos are mysterious. Possible associations include:

* Blazars (e.g., TXS 0506+056)
* The Seyfert II galaxy NGC 1068
* Tidal disruption events

In most source models, the medium doesn't affect oscillation outcomes.

High-energy neutrinos $\left(E_{v}>\mathrm{GeV}\right)$

The astrophysical sources of IceCube neutrinos are mysterious. Possible associations include:

* Blazars (e.g., TXS 0506+056)
* The Seyfert II galaxy NGC 1068
* Tidal disruption events

In most source models, the medium doesn't affect oscillation outcomes.

Due to kinematic decoherence, flavor ratios at Earth are concentrated around $\frac{1}{3}: \frac{1}{3}: \frac{1}{3}$.

Allowed flavor ratios at Earth

Bustamante, Beacom, Winter, PRL (2015)

High-energy neutrinos ($E_{v}>\mathrm{GeV}$)

Choked jets might be the exception: a site where the matter density could affect flavor mixing.

Mészáros \& Waxman 2001; Ando \& Beacom 2005;
Murase \& Ioka 2013; Carpio \& Murase 2020;

Chang, Zhou, Murase, Kamionkowski, 2210.03088

High-energy neutrinos ($E_{v}>\mathrm{GeV}$)

Choked jets might be the exception: a site where the matter density could affect flavor mixing.

Mészáros \& Waxman 2001; Ando \& Beacom 2005; Murase \& Ioka 2013; Carpio \& Murase 2020;

The low-energy neutrino density might even be important:

Abbar, Carpio, Murase, 2205.10384

Chang, Zhou, Murase, Kamionkowski, 2210.03088

High-energy neutrinos ($E_{v}>\mathrm{GeV}$)

Choked jets might be the exception: a site where the matter density could affect flavor mixing.

Mészáros \& Waxman 2001; Ando \& Beacom 2005; Murase \& Ioka 2013; Carpio \& Murase 2020; ..

The low-energy neutrino density might even be important:

Abbar, Carpio, Murase, 2205.10384

Chang, Zhou, Murase, Kamionkowski, 2210.03088

The modeling of these sites still has a lot of room to grow.

Cosmological neutrinos

The CvB today

Total density $\sim 336 \mathrm{~cm}^{-3}$
Average momentum $\sim 0.6 \mathrm{meV}$
Number of NR mass states ≥ 2

Cosmological neutrinos

The CvB today

Total density $\sim 336 \mathrm{~cm}^{-3}$
Average momentum $\sim 0.6 \mathrm{meV}$
Number of NR mass states ≥ 2
Flavor composition:
Decohered mass states of equal density

Cosmological neutrinos

The CvB today

Total density ~ $336 \mathrm{~cm}^{-3}$
Average momentum $\sim 0.6 \mathrm{meV}$ Number of NR mass states ≥ 2

Flavor composition:
Decohered mass states of equal density

Flavor asymmetries \& oscillations are included in calculations of $N_{\text {eff }} \& B B N$ abundances, but the asymmetries are too small for direct detection.
Dolgov et al., NPB (2002)
Abazajian, Beacom, \& Bell, PRD (2002)
Mangano et al., PLB (2005)
Johns et al., PRD (2016)
Grohs et al., PRD (2016)
Akita \& Yamaguchi, JCAP (2020)
Froustey, Pitrou, \& Volpe, JCAP (2020)
Bennett et al., JCAP (2020)

Cosmological neutrinos

The CvB today

Total density $\sim 336 \mathrm{~cm}^{-3}$
Average momentum $\sim 0.6 \mathrm{meV}$
Number of NR mass states ≥ 2
Flavor composition:
Decohered mass states of equal density
Capture rate on 100 g of tritium:
$\Gamma^{\mathrm{D}} \sim 4$ events per year
$\Gamma^{\mathrm{M}} \sim 8$ events per year
(Clustering enhances these by $\lesssim 50 \%$)

Flavor asymmetries \& oscillations are included in calculations of $N_{e f f} \& B B N$ abundances, but the asymmetries are too small for direct detection.
Dolgov et al., NPB (2002)
Abazajian, Beacom, \& Bell, PRD (2002)
Mangano et al., PLB (2005)
Johns et al., PRD (2016)
Grohs et al., PRD (2016)
Akita \& Yamaguchi, JCAP (2020)
Froustey, Pitrou, \& Volpe, JCAP (2020)
Bennett et al., JCAP (2020)

Cosmological neutrinos

The CvB today

Total density $\sim 336 \mathrm{~cm}^{-3}$
Average momentum $\sim 0.6 \mathrm{meV}$
Number of NR mass states ≥ 2
Flavor composition:
Decohered mass states of equal density
Capture rate on 100 g of tritium:
$\Gamma^{\mathrm{D}} \sim 4$ events per year
$\Gamma^{\mathrm{M}} \sim 8$ events per year
(Clustering enhances these by $\$ 50 \%$)

Flavor asymmetries \& oscillations are included in calculations of $N_{e f f} \& B B N$ abundances, but the asymmetries are too small for direct detection.
Dolgov et al., NPB (2002)
Abazajian, Beacom, \& Bell, PRD (2002)
Mangano et al., PLB (2005)
Johns et al., PRD (2016)
Grohs et al., PRD (2016)
Akita \& Yamaguchi, JCAP (2020)
Froustey, Pitrou, \& Volpe, JCAP (2020)
Bennett et al., JCAP (2020)

Dirac

$n\left(v_{h_{L}}\right)=n_{0}$
$n\left(\bar{v}_{h_{R}}\right)=n_{0}$
$n\left(v_{h_{R}}\right)=0$
$n\left(\bar{v}_{h_{L}}\right)=0$
Majorana
$n\left(v_{h_{L}}\right)=n_{0}$
$n\left(v_{h_{R}}\right)=n_{0}$
$n\left(N_{h_{R}}\right)=0$
$n\left(N_{h_{L}}\right)=0$

Chiral oscillations reduce Γ^{D} relative to Γ^{M}.
Duda, Gelmini, \& Nussinov, PRD (2001)
Long, Lunardini, \& Sabancilar, JCAP (2014)
Ge \& Pasquini, PLB (2020)
Bittencourt, Bernardini, \& Blasone, EPJC (2021)
Hernandez-Molinero, Jimenez, \& Peña Garay, JCAP (2022)

Coordinate-space picture of kinematic decoherence:

Wave-packet separation

Coordinate-space picture of kinematic decoherence:

Wave-packet separation

There's a term for superposed Gaussians...

Coordinate-space picture of kinematic decoherence:

There's a term for superposed Gaussians...

Schrödinger cat states

S. Haroche via Science et Vie Junior

Rundle, Mills, Tilma, Samson, Everitt, PRA 2017

Contrast with collisional / environmental decoherence:

The electron "measures" the flavor state, causing decoherence.

Neutrinos contribute to their own background. As a result, forward scattering changes oscillations in a nonlinear way.

Collective oscillations

Schrödinger's cat colony

Generally, the high densities in SNe \& NSMs suppress mixing because
interaction eigenstates \cong energy eigenstates.

Generally, the high densities in SNe \& NSMs suppress mixing because
interaction eigenstates \cong energy eigenstates.

The two main exceptions occur in regions with

- (avoided) level crossings or
- flavor instabilities.

MSW resonance is the classic example
Wolfenstein, PRD (1978); Mikheyev \& Smirnov, SJNP (1985)

Forward-scattering potentials in a CCSN
$\lambda=$ Matter $\operatorname{pot}^{\prime} \mathbf{l}$ (thin curves)
$\mu=$ Neutrino pot'l (thick curves)
$\omega=$ Vacuum osc. frequencies (blue bands)

Time after core bounce

Forward-scattering potentials in a CCSN
$\lambda=$ Matter pot'l (thin curves)
$\mu=$ Neutrino pot'l (thick curves)
$\omega=$ Vacuum osc. frequencies (blue bands)

Radius

Time after core bounce

Level crossings:
MSW, spectral swaps, MNR (mergers only?)
Duan et al., PRL (2007); Raffelt \& Smirnov, PRD (2007); Dasgupta et al., PRL (2009); Gava et al., PRL (2009); Friedland, PRL (2010);
Galais \& Volpe, PRD (2011); Malkus et al., PRD (2012);
Zhu et al., PRD (2016); Wu et al., PLB (2016); \& many more

Forward-scattering potentials in a CCSN

$\lambda=$ Matter pot'l (thin curves)
$\mu=$ Neutrino pot'l (thick curves)
$\omega=$ Vacuum osc. frequencies (blue bands)

Radius

Time after core bounce

Flavor instabilities can occur just about anywhere in or beyond the decoupling region, as we'll see...

Level crossings:
MSW, spectral swaps, MNR (mergers only?)
Duan et al., PRL (2007); Raffelt \& Smirnov, PRD (2007); Dasgupta et al., PRL (2009); Gava et al., PRL (2009); Friedland, PRL (2010);

Galais \& Volpe, PRD (2011); Malkus et al., PRD (2012);
Zhu et al., PRD (2016); Wu et al., PLB (2016); \& many more

"Symmetry is the enemy of instability."
 Nigel Goldenfeld

We now know that symmetric models omit crucial physics.

Sawyer, PRD $(2005,2009)$
Banerjee, Dighe, Raffelt, PRD (2011)
Raffelt, Sarikas, de Sousa Seixas, PRL (2013)
Izaguirre, Raffelt, Tamborra, PRL (2017)
And many others
$R_{\nu}=$ neutrinosphere radius

Three types of instabilities are known, each related to some kind of asymmetry between neutrinos and antineutrinos.

Collective oscillations are sensitive to physics that distinguishes between neutrinos and antineutrinos because

$$
H_{\mathbf{p}, \nu \nu} \sim G_{F} \int d^{3} \mathbf{q}(1-\hat{\mathbf{p}} \cdot \hat{\mathbf{q}})\left(\rho_{\mathbf{q}}-\bar{\rho}_{\mathbf{q}}\right)
$$

Slow instabilities. Vacuum oscillation frequencies: $\omega_{E_{\nu}} \neq \omega_{E_{\bar{\nu}}}$ Kostelecký \& Samuel, PRD (1995)

Fast instabilities. Neutrino angular distributions: $g_{\nu} \neq g_{\bar{\nu}}$
Sawyer, PRD (2005, 2008), PRL (2016)
Collisional instabilities. Interaction rates: $\Gamma_{\nu} \neq \Gamma_{\bar{\nu}}$
Johns, 2104.11369

There's strong evidence that fast instabilities occur in CCSNe \& NSMs.

Nagakura, Burrows, Johns, \& Fuller, PRD (2021)

Sawyer, PRD (2005); Banerjee et al., PRD (2011); Chakraborty et al., JCAP (2016); Izaguirre et al., PRD (2017); Capozzi et al., PRD (2017); Dasgupta et al., JCAP (2017); Delfan Azari et al., PRD (2019); Abbar et al., PRD (2020);

Glas et al., PRD (2020); Morinaga et al., PRR (2020); Xiong et al., ApJ (2020); Johns \& Nagakura, PRD (2021);
Nagakura \& Johns, PRD (2021a); Nagakura \& Johns, PRD (2021b); Capozzi et al., PRD (2021);
Shalgar \& Tamborra, Annu. Rev. Nucl. Part. Sci. (2021); Morinaga, PRD (2022); Harada \& Nagakura, ApJ (2022); \& others

Fast instabilities appear almost everywhere surrounding merger remnants, largely due to protonization of neutron-rich matter.

Indicative of the extent of flavor conversion (white = stable)

Richers, 2206.08444

Wu \& Tamborra, PRD (2017); Wu et al., PRD (2017); George et al., PRD (2020); Li \& Siegel, PRL (2021); Padilla-Gay et al., JCAP (2021); Just et al., PRD (2022); Fernández et al., 2207.10680

Collisional instabilities seem to be prevalent in CCSNe (left) and mergers (right) as well.

Instability growth rate $\left[\mu \mathrm{s}^{-1}\right.$]

A paradoxical phenomenon: decoherent interactions drive the growth of coherence.

Johns, 2104.11369; Johns \& Nagakura, PRD (2022); Johns \& Xiong, 2208.11059; Padilla-Gay, Tamborra, \& Raffelt, 2209.11235;
Xiong, Wu, Martínez-Pinedo, Fischer, George, Lin, \& Johns, 2210.08254 [left figure]; Lin \& Duan, 2210.09218;
Xiong, Johns, Wu, \& Duan, 2212.03750 [right figure]; Liu, Zaizen, \& Yamada, 2302.06263

Solving the neutrino quantum kinetic equations (QKEs)

 as part of a radiation/hydrodynamics simulation is not computationally feasible.
Solving the neutrino quantum kinetic equations (QKEs)

 as part of a radiation/hydrodynamics simulation is not computationally feasible.But by using reasonable approximations we get a sense of the possible effects of oscillations.

Solving the neutrino quantum kinetic equations (QKEs)

 as part of a radiation/hydrodynamics simulation is not computationally feasible.But by using reasonable approximations we get a sense of the possible effects of oscillations.

Approximations

\diamond Enforce flavor equilibrium in unstable regions:

- Flavor equipartition
- Other analytic prescription
- Local numerical solution
\diamond Solve moments of the QKEs

Raffelt \& Sigl, PRD (2007); Duan \& Shalgar, JCAP (2014); Johns et al., PRD (2020a); Johns et al., PRD (2020b);
Padilla-Gay et al., JCAP (2021), Dasgupta \& Bhattacharyya, PRL (2021); Xiong \& Qian, PLB (2021);
Padilla-Gay et al., PRL (2022); Myers et al., PRD (2022); Just et al., PRD (2022); Nagakura \& Zaizen, 2206.04097;
Nagakura, 2206.04098; Grohs et al., 2207.02214; Nagakura, 2301.10785; Ehring et al., 2301.11938; \& others

Flavor equilibration occurs through the development of small-scale features in phase space.

Sawyer, PRD (2005)
Raffelt \& Sigl, PRD (2007)
Mangano et al., PRD (2014)
Mirizzi et al., PRD (2015)
Johns et al., PRD (2020b)
Bhattacharyya \& Dasgupta, PRL (2021)

Cascade of power to smaller angular scales

Johns, Nagakura, Fuller, \& Burrows, PRD (2020b)
Similar phenomena occur in other systems-violent relaxation in grav. systems, filamentation in plasmas, turbulence in fluids-but we're still developing the theory for neutrino flavor fields.

Effects of neutrino mixing on CCSNe \& NSMs

Effects of neutrino mixing on CCSNe \& NSMs

Nucleo-

 synthesis

Accretion-disk winds: Enhanced r-process yields.
NS winds: Increased mass \& Y_{e} of ejected material.

Effects of neutrino mixing on CCSNe \& NSMs

Nucleosynthesis

Neutrino signals

MSW: Imprinted in neutronization burst from CCSN.
Collective effects: Presently unclear whether there will be smoking guns.

Accretion-disk winds: Enhanced r-process yields.
NS winds: Increased mass \& Y_{e} of ejected material.

Effects of neutrino mixing on CCSNe \& NSMs

Nucleosynthesis

Neutrino signals

MSW: Imprinted in neutronization burst from CCSN.
Collective effects: Presently unclear whether there will be smoking guns.

Dynamics

Presently unclear, even qualitatively.
But see these recent studies:
Nagakura, 2301.10785
Ehring et al., 2301.11938
Accretion-disk winds: Enhanced r-process yields.
NS winds: Increased mass \& Y_{e} of ejected material.

Summary

- Neutrino oscillations raise fundamental questions not only for particle physics (origin of neutrino mass?), but also for statistical physics.

Summary

- Neutrino oscillations raise fundamental questions not only for particle physics (origin of neutrino mass?), but also for statistical physics.
- High-energy neutrinos. Better source modeling might involve in-medium oscillation effects. Upcoming: IceCube-Gen2, KM3NeT, POEMMA, ...
- The CvB. Chiral oscillations, gravitational deflection, \& clustering all need to be considered together. Upcoming: PTOLEMY.
- CCSNe, NSMs, the DSNB. The oscillation problem remains open. Once it's solved, many calculations will need to be done to connect to observables.
Upcoming: DUNE, Super-K+Gd, Hyper-K, JUNO, ...

