Collective neutrino oscillations: from symmetry to simulation

Zewei Xiong GSI Helmholtzzentrum für Schwerionenforschung GmbH

Focus workshop on collective oscillations and chiral transport of neutrinos March 14, 2023

GSI Helmholtzzentrum für Schwerionenforschung

Collective neutrino oscillations: a challenging problem

- Many-body entanglements and correlations
- Three-flavor nature of oscillations
- Advection in an inhomogeneous environment
- Non-forward scatterings (collisions)

Various behaviors in homogeneous model

Geometric symmetry in bipolar flavor evolution

[ZX, M.-R. Wu, Y.-Z. Qian, arXiv: 2303.05906]

Collective neutrino oscillations

• Flavor evolution equation:

 $\mathbf{H}(\omega, \overrightarrow{v}) = \boldsymbol{\omega} \mathbf{B} + v_{\rho}(\overrightarrow{v})(\lambda^{\rho} \hat{\mathbf{e}}_{3} + \mu \mathbf{J}^{\rho})$

vacuum term matter term self-induced term (negligible mixing angle)

$$\mathbf{J}^{\rho} = \int v^{\rho}(\overrightarrow{v}') F(\omega', \overrightarrow{v}') \mathbf{P}(\omega', \overrightarrow{v}') d\omega' d\overrightarrow{v}'$$
polarization current

Decomposed for vertical component, P_3 , and horizontal component expressed as a complex function, $P_1 \equiv P_1 - iP_2$, with $H_1 \equiv H_1 - iH_2$

$$i\partial_t \mathsf{P}_\perp = H_3 \mathsf{P}_\perp - P_3 \mathsf{H}_\perp, \ \partial_t P_3 = \operatorname{Im}(\mathsf{H}_\perp \mathsf{P}_\perp^*)$$

• Linear stability analysis $(|P_{\perp}| \ll P_3 \approx 1)$: Assuming $P_{\perp}(t) = Qe^{-i\Omega t}$, we have

$$\mathsf{P}_{\perp} = \frac{\mathsf{H}_{\perp}}{H_3 - \Omega}$$

Circular configuration in linear regime

Geometric symmetry

Eight representative models

If H_{mat} is included we take $\lambda^{\rho} = (\mu, 0, 0, 0.5\mu)$. For cases where H_{vac} is included, the neutrino mass ordering is taken to be inverted ordering. ($\mathbf{B} \approx \hat{\mathbf{e}}_3$)

model	$N_{ m beam}$	$H_{ m vac}$	H_{mat}	discretization schemes	$F_{\omega,ec v}$
Two-beam slow	2	\checkmark	_	$v^x = v^y = v^z = 0$ effectively; ω is either 0.1μ or -0.1μ	$F_{\omega} = \mathrm{sgn}(\omega) + 0.5$
Single-angle slow	10000	\checkmark	_	$v^x = v^y = v^z = 0$ effectively; 10000 bins for $-0.2\mu < \omega < 0.2\mu$	$F_{\omega} = \mathrm{sgn}(\omega) + 0.5$
Single-energy AS fast	10000	_	_	$v^x = v^y = 0$ effectively; 10000 bins for $-1 < v^z < 1$	$\overline{F_{v^z}=g(v^z,0.9)}$
Four-beam coplanar fast [B. Dasgupta+,	2018] 4	_	_	$v^z = 0$; ϕ takes $\pi/6$, $5\pi/6$, $7\pi/6$, and $11\pi/6$ respectively	$F_{v^x,v^y} = \operatorname{sgn}(v^y)$
Eight-beam coplanar fast	8	_	_	$v^z = 0;$ 8 bins for $0 < \phi < 2\pi$	$F_{v^x,v^y} = \operatorname{sgn}(v^y)$
AS fast with non-zero [I. Padilla-10000 matter bulk velocity Gay+, 2021]		_	\checkmark	$v^x = v^y = 0$ effectively; 10000 bins for $-1 < v^z < 1$	$F_{v^z} = g\left(v^z, 0.9\right)$
MZA slow	40000	\checkmark	_	$v^x = v^y = 0$ effectively; 200 bins for $-0.2\mu < \omega < 0.2\mu$; 200 bins for $-1 < v^z < 1$	$F_{\omega,v^z} = [\operatorname{sgn}(\omega) + 0.5] \times (1 + 0.5v^z)$
SB fast	38400	_	_	300 bins for $-1 < v^z < 1$; 128 bins for $0 < \phi < 2\pi$	$F_{v^x,v^y,v^z} = g(v^z, 1.1)$

$$g(v^{z},\alpha) = \frac{20}{\sqrt{\pi}} \left[\sigma_{\nu}^{-1} e^{-(\frac{1-v^{z}}{\sigma_{\nu}})^{2}} - \alpha \sigma_{\bar{\nu}}^{-1} e^{-(\frac{1-v^{z}}{\sigma_{\bar{\nu}}})^{2}} \right] \text{ with } \sigma_{\nu} = 0.6\sqrt{2} \text{ and } \sigma_{\bar{\nu}} = 0.5\sqrt{2}.$$

Periodic bipolar flavor evolution

Breaking-down of bipolar evolution

Inhomogeneous neutrino gas

• Equation of motion:

$$v^{\rho}\partial_{\rho}\mathbf{P} = \partial_{t}\mathbf{P} + v^{z}\partial_{z}\mathbf{P} = \mathbf{H} \times \mathbf{P}$$

• Even if only allow one K mode to develop from linear regime to non-linear regime $[P_{\perp}(z) \propto e^{iK^z z}]$

$$\partial_t \mathbf{P} - v^z K^z \hat{\mathbf{e}}_3 \times \mathbf{P} = \mathbf{H} \times \mathbf{P} = \lambda^t \hat{\mathbf{e}}_3 \times \mathbf{P}$$
$$\partial_t \mathbf{J}^t = \lambda^t \hat{\mathbf{e}}_3 \times \mathbf{J}^t + K^z \hat{\mathbf{e}}_3 \times \mathbf{J}^z$$
$$\operatorname{Im}(\mathbf{J}_{\perp}^t \mathbf{J}_{\perp}^{z^*}) \not\approx 0$$

• This symmetry relies on the geometry of two-flavor Bloch sphere. Three flavors? Incoherent collisions?

Collisional flavor instability simulated in spherically symmetric supernova model

[ZX, M.-R. Wu, G. Martínez-Pinedo, T. Fischer, M. George, C.-Y. Lin, L. Johns, arXiv: 2210.08254]

Collisional flavor instability in quantum kinetic equation

• Flavor evolution equation with advection in spherically symmetric supernova model and incoherent collisions:

$$(\partial_t + v_r \partial_r + \frac{1 - v_r^2}{r} \partial_{v_r}) \varrho(E, v_r) = -i[\mathscr{H}(E, v_r), \varrho(E, v_r)] + \mathscr{C}\{\varrho(E, v_r)\}$$

EA	Emission and absorption	$\nu_e + n \leftrightarrows p + e^-$
		$\bar{\nu}_e + p \leftrightarrows n + e^+$
		$\bar{\nu}_e + p + e^- \leftrightarrows n$
NNS	Neutrino-nucleon scattering	$\nu + N \leftrightarrows \nu + N$
		$\bar{\nu} + N \leftrightarrows \bar{\nu} + N$
NES	Neutrino-electron scattering	$\nu + e^{\pm} \leftrightarrows \nu + e^{\pm}$
NPR	Neutrino pair reactions	$\nu + \bar{\nu} \leftrightarrows e^- + e^+$
		$\nu + \bar{\nu} + N + N \leftrightarrows N + N$

Classical neutrino transport: $df_{\nu_e}/dt = j_e(1 - f_{\nu_e}) - \chi_e f_{\nu_e}$

emissivity opacity

Quantum kinetic equation: [A. Vlasenko, G. Fuller, V. Cirigliano, 2014; D.N. Blaschke, V. Cirigliano, 2016;]

$$\mathscr{C}_{\text{EA}} \sim \begin{pmatrix} j_e(1-\varrho_{ee}) - \chi_e \varrho_{ee} & -(j_e + \chi_e)\varrho_{e\mu}/2 \\ -(j_e + \chi_e)\varrho_{e\mu}^*/2 & 0 \end{pmatrix}$$

Collisional flavor instability [Lucas Johns, 2021]

Models with advection

Iso-ene

 \bullet

ullet

$$(\partial_{t} + v_{r}\partial_{r} + \frac{1 - v_{r}^{2}}{r}\partial_{v_{r}})\varrho = -i[a_{\nu\nu}\mathcal{H}_{\nu\nu}, \varrho] + \mathcal{C}(\varrho)$$
Iso-energetic NNS:

$$\mathscr{C}_{NNS} = \int dv'_{r}R_{NNS}(E, v_{r}, v'_{r})[\varrho(E, v'_{r}) - \varrho(E, v_{r})]$$
with the opacity

$$\chi_{NNS}(E) = \int dv'_{r}R_{NNS}(E, v_{r}, v'_{r}).$$
Attenuation factor

$$a_{\nu\nu}(r) = \frac{a_{1}}{1 + e^{(a_{2} - r)/a_{3}}}$$

$$\int dv'_{r}R_{NNS}(E, v_{r}, v'_{r}).$$

Models with advection

- Use background profiles from 1-D CCSN simulations (AGILE BOLTZTRAN) with an $18M_{\odot}$ progenitor at the post-bouncing time $t_{\rm pb} \approx 250$ ms
- Solve the neutrino flavor evolution equation

$$(\partial_t + v_r \partial_r + \frac{1 - v_r^2}{r} \partial_{v_r}) \varrho(E, v_r) = -i[a_{\nu\nu} \mathcal{H}_{\nu\nu}, \varrho(E, v_r)] + \mathcal{C}_{\text{EA}} + \mathcal{C}_{\text{NNS}}$$

- in COSE ν for two flavors ν_e and ν_μ up to ~1 ms

- study the collisional flavor instability in the absence of fast flavor instability
- NES and NPR are more computationally expensive because of $R_{\text{NES/NPR}}(E, E', v_r, v_r')$
- Boundary conditions:
 - Inner boundary: neutrinos in thermal equilibrium with matter between 10 and 16 km to mimic NPR
 - Outer boundary: freely stream out at 85 km
- Initial perturbation (flavor mixing seed): radial-dependent Gaussian function

Evolution of collisional flavor instability

Evolution of collisional flavor instability

- distributions of ν_e and $\bar{\nu}_e$ are affected at the onset of the flavor conversion, but quickly restored by large EA rates
- leave imprints in the spectra of heavy-lepton (anti)neutrinos at the free-streaming regime

Effects of vacuum term

Effects **BIB**M

10⁰

$$\mathbf{H}_{\text{mat}} = \begin{pmatrix} V_{\text{mat}} & 0\\ 0 & 0 \end{pmatrix} = \sqrt{2}G_F \begin{pmatrix} n_e & 0\\ 0 & 0 \end{pmatrix}$$

Use parametric function instead: $V_{\text{mat}} \rightarrow \frac{1}{2\Delta r} \exp\left[-\left(\frac{r \; [\text{km}] - 10}{18}\right)^4\right]$ does not affect the initial evolution of flavor instability for $t \le 0.016 \text{ ms}$

This parametric function mainly varies between 20 km

and 50 km where the collisional instability occurs.

 $t_{\rm pb}\approx 250~{\rm ms}$

35

r [km]

25

=2.4km/c=0.008ms

=4.8km/c=0.016ms

=24.0km/c=0.080m

48.0km/c=0.160ms

50

no matter te

35

40

45

.2km/c=0.004ms

=48.0km/c=0.160ms

=**0**.008ms

 $= 2.4 \text{km/}{0}$

24.0km

50

55

- affect the later transport of flavor mixing by mainly reducing the group velocity
- affect the reduced amount of neutrino mean energy

40

Summary and outlook

- We identify a geometric symmetry
 - to understand the periodic bipolar flavor evolution.
 - We show in numerical examples absence of this symmetry leads to kinematic decoherence.
 - Periodic bipolar evolution is special.
- We implement a multi-energy and multi-angle simulator
 - including advection on a global scale in a spherically symmetric model
 - with realistic EA & NNS collisional rates
 - to study collisional flavor instability.
 - Collisional instability leads to flavor conversions of heavy lepton neutrinos near decoupling region.
 - Artificial attenuation? include NES & NPR? matter feedback? GR effect?

