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Observational accessibility
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[age < 1 s]

cosmic neutrino background
R 1 s]

[age

z = 1089, age 380000 yr]

[

[record: GNS-z11, z = 11.9, age 0.4 Gyr, Oesch et al 20761

10%* seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Beginning
of the
Universe

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
Accelerated expansion  light and matter are coupled separate Atoms start feeling  The first stars and
of the Universe Dark matter evolves * Protons and electrons  the gravity of the galaxies form in the

independently: it starts form atoms cosmic web of dark densest knots of the

tlumpin? and forming - Light starts travelling ~ Matter cosmic web

a web of structures freely: it will become the

E P F L gos:ut Mn:dr%:\ﬁ Jennifer
ackgroun
: Schober



Hints of primordial magnetic fields?

[llustrisTNG simulations

[Springel et al. 2011 ]
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Constraints on void magnetic field

4
-6 |-

i -

o0

o 8F &

Q — ‘n

e — -

RO |E

2 M -10F8

= o c

Q8 S

-lq-') -12

c

(o] 1]

(g}

& -14
16 F

| | 1 ] ] | | | |

log (&M [MPC]) Jennifer
=PrL magnetic correlation length Schober



Constraints on void magnetic field
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Constraints on void magnetic field
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Constraints on void magnetic field
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Constraints on void magnetic field
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Constraints on void magnetic field

(Direct effects:

Indirect effects: heating via magnetic diffusion

changes in the baryon velocity field
caused by the Lorentz force
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i -
o0
c -8
o~
w0
O -10
3 2
=Yy
O Q
= -12
-
on
(4]
= 14
-16
19g (§M [MP-C]) Jennifer
=Pr-L magnetic correlation length Schober



Constraints on void magnetic field
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Constraints on void magnetic field
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Constraints on void magnetic field
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Constraints on void magnetic field
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Constraints on void magnetic field

Cosmological simulations of dwarf galaxies
[Sanati et al. 2020 ]:

Primordial magnetic fields induce additional density fluctuations

= modification of the primordial matter power spectrum
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Constraints on void magnetic field

Cosmological simulations of dwarf galaxies
[Sanati et al. 2020 ]:
Primordial magnetic fields induce additional density fluctuations
= modification of the primordial matter power spectrum
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Constraints on void magnetic field

r

Cosmological simulations of dwarf galaxies
[Sanati et al. 2020 1]:

= modification of the primordial matter power spectrum
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Constraints on void magnetic field
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Cosmological simulations of dwarf galaxies
[ Sanati et al. 2020 ]:

Primordial magnetic fields induce additional density fluctuations
= modification of the primordial matter power spectrum
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Constraints on void magnetic field

Cosmological simulations of dwarf galaxies
[Sanati et al 2020 ]
Primordial magnetic fields induce additional density fluctuations
= modification of the primordial matter power spectrum
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Constraints on void magnetic field
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Constraints on void magnetic field

Non-detection of GeV emission from TeV blazars:
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Constraints on void magnetic field
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Constraints on void magnetic field

Non-detection of GeV emission from TeV blazars:
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Constraints on void magnetic field
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Magnetic fields across the Universe
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Magnetic fields across the Universe
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Connecting observation with theory
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Connecting observation with theory
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Connecting observation with theory
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Connecting observation with theory
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Magnetic history of the Universe
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Magnetic history of the Universe

r . N
Seed magnetic fields:
. Inflation:
fluctuations of the electromagnetic field are increased
[ Turner & Widrow 1988, Ratra 1992 ]
By~107% -107? G
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Magnetic history of the Universe

~N

(Seed magnetic fields:

- Inflation:
fluctuations of the electromagnetic field are increased
[ Turner & Widrow 1988, Ratra 1992 ]

By~107% —-107? G
» (First-order) phase transitions:

non-equilibrium conditions allow for battery processes
[Hogan 1983, Sigl et al 1997 ]

By~107% —-107%° G
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Magnetic history of the Universe

Seed
magnetic
fields
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Magnetic history of the Universe

4 . ) . )
Modelling the primordial plasma
Dynamical variables: magnetic field B, velocity field U, density p
+ equation of state
Seed
magnetic
fields
M ’
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Magnetic history of the Universe

r : : : )
Modelling the primordial plasma
Dynamical variables: magnetic field B, velocity field U, density p
+ equation of state
Evolution equations:
Fully general
d relativistic MHD
See _ equations
magnetic
fields
. _ J
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Magnetic history of the Universe

4 . : : )
Modelling the primordial plasma
Dynamical variables: magnetic field B, velocity field U, density p
+ equation of state
Evolution equations:
Fully general Use comoving quantities like B = 2B MHD
Seed relativistic MHD | and conformal time df = o 1dt equations
: equations [ds? = c*dt® — a(t)?d2].
magnetic
fields [ Brandenburg et al. 1996 ]
M ’
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Magnetic history of the Universe

(Decaying magnetohydrodynamical (MHD) turbulence: )
The evolution of magnetic fields is governed by:
0B
—x = VX[UxXxB-nV x B]
magnetic field velocity magnetic resistivity
Seed
magnetic
fields
\ ;L _ y
10" seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate

Jennifer
E PFL Schober



Magnetic history of the Universe

(Decaying magnetohydrodynamical (MHD) turbulence: )
The evolution of magnetic fields is governed by:
0B
5 = Vx|Ux B—nV x Bj
It implies that magnetic helicity A - B (with the vector potentlal deflned
in B =Y x A)is conserved in the limit 7 — O: <
J(A - 13)___0
Seed ot
magnetic
fields
b ’
10 seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate
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Magnetic history of the Universe

(Decaying magnetohydrodynamical (MHD) turbulence:
The evolution of magnetic fields is governed by:

B

aé?—t = Vx|[UxB-nV x Bj

It implies that magnetic helicity A - B (with the vector potentlal deflned
in B=YV x A)is conserved in the limit n — O: =

dA-B)
Seed o
magnetic - By using the correlation length &y to write A - B ~ &,;B?, we find
fields BN, —» & ("inverse cascade”)
\ — N _ J
10" seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate
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Magnetic history of the Universe

( . . )
Decaying magnetohydrodynamical (MHD) turbulence:
Ar Zeemann splitting
Seedt_ [ Kahniashvili et al. 2013,
m?_g?de IC Brandenburg et al. 2017
I=leE 208 o6 o4 o2 o 2« Hosking & Schekochihin 2021]
. log (&v [Mpc]) _ J
10" seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate
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Magnetic history of the Universe

rDecaying magnetohydrodynamical (MHD) turbulence: )
: f [ Banerjee & Jedamzik 2004 ]
Seedt_ [Kahniashvili et al. 2013,
m ?_8 II'I de IC Brandenburg et al. 2017,
ields 12 0 8 -6 4 2 0 2 4 HOS/(/hg & Schekochihin 2027]
. log (6 [Mpe]) _ o
10 seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

/

s ‘.;. \ -..* A

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate
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Magnetic history of the Universe

Seed :
. Decaying MHD
magnetic turbulence
fields
10 seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate
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Magnetic history of the Universe

Passive evolution:

Magnetic field is frozen in
Hubble expansion

Seed :
. Decaying MHD
magnetic turbulence
fields
10 seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate
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Magnetic history of the Universe

Seed
: Decaying MHD '
magnetic tur)I;ulince Pafsl\_/e
fields evolution
10 seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate
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Magnetic history of the Universe

( ™)

MHD dynamos [ Brandenburg & Subramanian 2005 ]:

Kinetic energy:
. Turbulence
(accretion, Magnetic
supernovae) energy
Seed . Large-scale
magnetic Ds rotation
fields |
\ _ y
;/
10 seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years
N

},

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate
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Magnetic history of the Universe

Seed _
magnetic Decaying MHD Passive MHD
fields turbulence evolution dynamos
10" seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate
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Magnetic history of the Universe

Reviews:

Durrer & Neronov 2073
Subramanian 2016
Vachaspati 2020

Seed _ _
magnetic Decaying MHD Passive MHD

fields turbulence evolution dynamos

™ —

10" seconds 1 second 100 seconds 380 000 years 300-500 million years Billions of years 13.8 billion years

Inflation Formation of Light and matter Light and matter  Dark ages First stars Galaxy evolution The present Universe
liaht and matter are coupled separate
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Magnetic history of the Universe

Reviews: "Evolution in non-linear structure
Durrer & Neronov 2013 formation:
Subramanian 2076
Vachaspati 2020

Seed :

; Decaying MHD Passive MHD
magnetic turbul _ d

fields urbulence evolution ynamos

10" seconds 1 second 100 seconds 380 000 years 300-500 million years

Inflation Formation of
liaht and matter

cPrL

Light and matter Light and matter  Dark ages
are coupled separate

First stars Galaxy evolution The present Universe
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Magnetic history of the Universe

N r — )
Reviews: Evolution in non-linear structure
Durrer & Neronov 2073 formation:

Subramanian 2076
Vachaspati 2020

Seed

magnetic _
fields turbulence evolution

™ —

10" seconds 1 second 100 seconds 380 000 years

Decaying MHD Passive MHD
dynamos

Fossils of the
primordial magnetic
field in cosmic voids.

window into early Universe

Inflation Formation of Light and matter Light and matter Dark ages Fi
liaht and matter are coupled separate
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Magnetic history of the Universe

e . ]
Evolution in non-linear structure
formation:
A macroscopic
quantum effect can
lead to significant
changes in this era:
Seed : _
magnetic Chiral Decaying MHD| Passive MHD
fields MHD turbulence evolution dynamos
10" seconds 1 second 100 seconds 380 000 years

Fossils of the
primordial magnetic
field in cosmic voids.

window into early Universe

Inflation Formation of Light and matter Light and matter Dark ages Fi
light and matter are coupled separate
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“Simulations of chiral
magnetohydrodynamics”

-Outline-




New currents at high energies
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“spin
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New currents at high energies
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New currents at high energies
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New currents at high energies
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New currents at high energies

B
@ b L
R | -
@ L JCME
R - R
i <

A chiral chemical potential
M5 = UL — MR

leads to an additional electric current
Jome x psB

[ Vilenkin 1980, see talk by Naoki Yamamoto].
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New currents at high energies
Where/when is the CME important?

L) The CME is a Standard Model effect that occurs
B in @ magnetized plasma, if chirality flipping
reactions are supressed, i.e. at 7" > 10 MeV.

L<?> b L
R | -
@ L JCME
R - R
i <5

A chiral chemical potential
M5 = UL — MR

leads to an additional electric current
Jome x psB

[ Vilenkin 1980, see talk by Naoki Yamamoto].
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New currents at high energies

B
L<?> b L
R | -
@ L JCME
R - R
i <5

A chiral chemical potential
M5 = UL — MR

leads to an additional electric current
Jome x psB

[ Vilenkin 1980, see talk by Naoki Yamamoto].

Where/when is the CME important?

The CME is a Standard Model effect that occurs
in @ magnetized plasma, if chirality flipping
reactions are supressed, i.e. at 7" > 10 MeV.

Early Universe

[Joyce & Shaposhnikov 1997; Fréohlich &
Pedrini 2000, Semikoz & Sokoloff 2004,
Boyarsky et al. 2012, Paviovic et al 2017 ]

cPrL
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New currents at high energies

B
Eo> | e
R . | -
@ L JCME
R - R
- e

A chiral chemical potential
M5 = UL — MR

leads to an additional electric current
Jome « pusB

[ Vilenkin 1980, see talk by Naoki Yamamoto].

Where/when is the CME important?

The CME is a Standard Model effect that occurs
in @ magnetized plasma, if chirality flipping
reactions are supressed, i.e. at 7" > 10 MeV.

Early Universe

[Joyce & Shaposhnikov 1997; Fréohlich &
Pedrini 2000, Semikoz & Sokoloff 2004,
Boyarsky et al. 2012, Paviovic et al 2017 ]

(Proto-)neutron stars

[ Dvornikov & Semikoz 2015, Grabowska et
al 201715, Sigl/ & Leite 2016, Yamamoto 2016 ]

Heavy-ion collisions
[ALICE collaboration, 2013, Hirono, Hirano,
& Kharzeev 2074 ]

Condensed matter (Weyl semimetals)
[ Galitski Kargarian, & Syzranov 2018 ]

J
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Extension of MHD to high energies

Electric current

J = Jomm
and Maxwell’s equations yield
the induction equation:

B
aa—t=V><[U><B—77V><B]

Conservation law

(valid forn — 0 ):
;! Ui
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Extension of MHD to high energies

Classical MHD

Electric current
J = JOhm

and Maxwell’s equations yield
the induction equation:

0B

5 =V x|[U x B—nV x B|

Conservation law

(valid fornp — 0 ):

0

D

cPrL

Transition at
high
temperature
(> 10 MeV)
[Boyarsky,
Froehlich &
Ruchayskiy
2012]

Chiral MHD

Electric current with quantum effects
J = Johm +JcumE

and Maxwell’s equations yield the chiral
induction equation:
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Extension of MHD to high energies

Classical MHD

Electric current
J = JOhm

and Maxwell’s equations yield
the induction equation:

0B

5 =V x|[U x B—nV x B|

Conservation law

(valid fornp — 0 ):

0

D

cPrL

Transition at
high
temperature
(> 10 MeV)
[Boyarsky,
Froehlich &
Ruchayskiy
2012]

Chiral MHD

Electric current with quantum effects

J =Jomm + JoME

and Maxwell’s equations yield the chiral

induction equation:
0B

5 =Vx[UxB—-n(VxB

- M5B)|
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Extension of MHD to high energies

Classical MHD

Electric current
J = JOhm

and Maxwell’s equations yield
the induction equation:

0B

5 =V x|[U x B—nV x B|

Conservation law

(valid forn — 0 ):
;! Ui

Transition at
high
temperature
(> 10 MeV)
[Boyarsky,
Froehlich &

Ruchayskiy
2012]

Chiral MHD

Electric current with quantum effects
J = Johm +JcumE

and Maxwell’s equations yield the chiral
induction equation:

B
%—t:Vx[UxB—n(VxB—%B)]
Dp
Tts =/\T] [B’(VXB)—[J,{,Bz]
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Extension of MHD to high energies

Classical MHD

Electric current
J = JOhm

and Maxwell’s equations yield
the induction equation:

0B

5 =V x|[U x B—nV x B|

Conservation law

(valid forn — 0 ):
;! Ui

Transition at
high
temperature
(> 10 MeV)
[Boyarsky,
Froehlich &
Ruchayskiy
2012]

Chiral MHD

Electric current with quantum effects
J = Johm +JcumE

and Maxwell’s equations yield the chiral
induction equation:

B
%—t:Vx[UxB—n(VxB—%B)]
Dp
Tts Z/\T] [B’(VXB)—,U,532]

Conservation law
(valid for any n):
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Chiral MHD

5 Exponential

B : _

5 = VI —n (VxB—psB)] | M 7 = npsk — nk®
B(t) o exp(~t)

[k : wavenumber]
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Chiral MHD

Exponential
: 2
%—B = Vx| —n (V x B-psB)] | sz v = npsk —nk
g B(t) o exp(t)

[k : wavenumber]

— The maximum growth
rate is given by

2
N
V5 = —45
and attained on the scale:
5
ks =
> 9

[Joyce & Shaposhnikov 1997,
see also talk by Tomoya
Takiwaki]
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Chiral MHD

Full set of equations

0B
ot

Vx| —n (V x B — usB)]

An [B«(V x B) — us B

EPFL

Exponential
ansatz:

B(t) o« exp(7t)

Non-linearity
determined by

(8rem )?
A= 3h
3 C(kBT)2

v = nusk — nk?

Saturation occurs when 5
vanishes according to the
conservation law:

(2 -
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Chiral MHD

c’?a_? = VX[UxB-n(V xB-us;B)|
p% = (VxB)xB-Vp+ V-(2vpS)
Dp

D

T"t"’ = DsAus+An [B-(V x B) — y5 B?]

[ Rogachevskii et al. 2017 ]
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Chiral MHD

Full set of equations

0B
ot
DU
"Dt
Dy
Dt
Dps
Dt

V x|[U xB—-n(V x B - usB)]
(VxB)xB—Vp+ V-(2vpS)
—p V.U

Ds Aps + An [B-(V x B) — us B

[ Rogachevskii et al. 2017 ]

EPFL

Direct numerical simulations

Code properties:
- Grid based

- bth-order explicit finite
difference method in space

. 3rd-order accurate time-
stepping method

[ pencil-code. nordita.org

Setup for chiral MHD:

3D box with periodic boundary
conditions

Resolution up to 10243 grid cells
- Parallelization up to 1024 cores

- Explicit viscosity and magnetic
resistivity

Jennﬁef
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The Pencil Code yenci-code nordia.ors

The Pencil Code

News

Documentation

Highlights

Samples

Autotests

Download

Meetings

References

Contact

Latest changes ...

Chiral MHD sample at:

cPrL

The Pencil Code is a high-order finite-difference code for compressible hydrodynamic flows with
magnetic fields. It is highly modular and can easily be adapted to different types of problems.
The code runs efficiently under MPI on massively parallel shared- or distributed-memory
computers.

The Pencil Code or equivalent codes have been used for many different applications in a (more
or less) astrophysical context. Examples are

Outflows from
accretion discs

Turbulence
simulations

Dynamo
experiments

Available as open source: http://github.com/pencil-code.

See also the README.md for an entry to our GitHub papes.

pencil-code/samples/2d-tests/chiral_dynamo

Pencil News

Recent news item
about the Newsletter,
Pencil Code office
hours, and the the
Pencil Code Steering
Committee:

[more...]

Get Pencil

There are several
ways how to get the
code. [more...]

Learn Pencil
Quick start guide for

beginners, samples,
manual & [more...]
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“Simulations of chiral
magnetohydrodynamics”

-Outline-




Chiral MHD scenarios

Initial chirality

(A-B)—|—2</;5> 20

No initial chirality

(A-B)+2<f\‘5> =0
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Chiral MHD scenarios

% 2(us)  2(ps) “Classical” chiral dynamo
Initial chirality /’ ( )+ X\ Rogachevskii et al. 2017 &
0

>0 Schober et al. 2018

(A-B)+ 2<’A‘5> 40

No initial chirality

(A-B)+2<f\‘5> — 0

Jennifer
E PFL Schober



Chiral MHD dynamos

Initial condition

week magnetic
seed field B

cPrL

10() -

classical MHD

0.1

0.2

time

0.3

0.4 0.5
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Chiral MHD dynamos

Initial condition

week magnetic
seed field B

uniform chiral
asymmetry us

cPrL

Bims and 25/ A

100 .

—
2
(3o}

—
I
'y

107° 1

10-8

--------

classical MHD

...... 2u5/A

0.0

0.1

0.2

time

0.3

0.4 0.5
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Chiral MHD dynamos

Initial condition

. week magnetic
seed field B

. uniform chiral
asymmetry us

cPrL

Bims and 25/ A

100 .

—
i
(3o}

H
9
'y

1076 1

10-8

classical MHD
chiral MHD (turbulent)
— Brms
oooooo 2/1,5/A
0.0 0:1 0f2 Of3 0f4 0.5
time
Jennifer

Schober



Chiral MHD dynamos

- [ ] - - 2
Initial condition 0
. week magnetic gt
seed field B e N
. uniform chiral =<
asymmetry /s B g2 ]
[N
©

c

(g] .

n 104 classical MHD
6.0x107% chiral MHD (turbulent)
40x107% - —_— Brms
2.0x107 LR 2/15/)\
0.0x10° ) 0.1 0.2 0.3 0.4 0.5
—-2.0x104 tlme
—4.0x104
—-6.0x10%
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Chiral MHD dynamos

. week magnetic | T
seed field B 1071

. uniform chiral
asymmetry us

e
e
e
s
.
-
.
"a,
.
L
.................

s and 2p5 /A

H
=
S
\

classical MHD

Bx during the
small-scale chiral
dynamo phase

2.0 x 103 chiral MHD (turbulent)

I 2“5/)\

0.0 x 10° . :
0.3 0.4 0.5

1.0x 1073

-2.0%x1073
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Chiral MHD dynamos

Initial condition

. week magnetic
seed field B

. uniform chiral
asymmetry us

cPrL

102

100 m

18 and 2.“5/’\

—
=
S
\

Bx during the
small-scale chiral
dynamo phase

‘Bx during the
mean-field chiral
dynamo phase

-
te.,
"aa
-
...................

classical MHD

2.0x107?
0.0 x 10°

—-2.0x 1072

—4.0%x1072 A
-6.0x1072
—-8.0x1072

-1.0x 107!
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Mean field theory

Mean-field theory developed by Rogachevskii et al (2017):

B
%—t:Vx[UxB—n(VxB—%B)]

Separation into mean and
fluctuations:

s = 5 + Ops
B=B+ /B
U=U + U
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Mean field theory

Mean-field theory developed by Rogachevskii et al (2017):

B
%—tZVX[UXB—n(VXB—ILLg;B)]

Separation into mean and
fluctuations:

s = fis + Ops

B=B-+6B

U=U+ 66U
OB . o _ _
EZVX [UXB+(77M5+aM)B—(77+nT)VxB]

cPrL
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Mean field theory

Mean-field theory developed by Rogachevskii et al (2017):

B
%—t:Vx[UxB—n(VxB—%B)]

Separation into mean and
fluctuations:

s = fis + Ops

B=B-+6B

U=U+ 66U
OB . o _ _
WZVX [UXB+(77M5+au)B—(77+nT)VxB]

Ansatz:
B(z,t) < exp(yt + ik - )

v = (nis + au)k — (0 + o)k

cPrL
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Mean field theory

Mean-field theory developed by Rogachevskii et al (2017):

ot

cPrL

aB:Vx[UxB—n(VxB—%B)]

Separation into mean and
fluctuations:

s = 5 + Ops
B=B+ /B
U=U + U

U x B+ (s +a,)B — (n+nr)V x B

Ansatz:
B(z,t) < exp(yt + ik - )

v = (nfis +Hau)k — (0 +Hnr)k?

2/ \\Re

o, = —gn%log(ReM) Nt = 3

Jennifer
Schober



Chiral MHD dynamos

Initial condition

. week magnetic
seed field B

. uniform chiral
asymmetry us

cPrL

102

100 m

18 and 2.“5/’\

—
=
S
\

Bx during the
small-scale chiral
dynamo phase

‘Bx during the
mean-field chiral
dynamo phase

-
te.,
"aa
-
...................

classical MHD

2.0x107?
0.0 x 10°

—-2.0x 1072

—4.0%x1072 A

-6.0x1072

—-8.0x1072

-1.0x 107!
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Scenario 1: Chiral MHD dynamos

- w | | | | lIII | | | I 11 III | |
Initial condition I 1anéinar 1 ; )
_ v, dynamo aminar v amo -
- week magnetic 1;.__ + mode c‘éugl?ng
seed field B : NN A o .
large chiral 3 s ®
asymmetry is ‘“\5‘10_1 — =
(uniform) = - .
o I i
10_2 1 | | B | lllll 1 ] | SO O | llll | 1
1 10 100
R’eM
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Scenario 1: Chiral MHD dynamos

Initial condition

week magnetic
seed field B

large chiral
asymmetry Us
(uniform)

cPrL

10—+

v /v’

10—+

| laminar N
vy dynamo laminar v, dynamo |
— + mode coupling

[ F -~ - - i;'“f'iFii'!F" - -
e ® -
- turbulent R

o, dynamo
1 | | I R B X I | l 1 ] | EEO OB B B | ll 1
1 10 100
R’eM
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Scenario 1: Chiral MHD dynamos

Initial condition

- week magnetic
seed field B

. large chiral
asymmetry Us
(uniform)

10—+

n I | | PRI L B B | I | | | B T O N R I | o
. laminar _
v, dynamo laminar v, dynamo |
—— + mode coupling

' F == = o AR -
- ® ”
- turbulent 7

o, dynamo
1 | | B S B BN N | l 1 1 | ESN O ot I B | 1 1
1 10 100
l2’6M

Results of Rogachevskii et al. (2017) & Schober et al. (2018) -

- The small-scale chiral dynamo instability drives turbulence.
- Mean-field dynamos generate magnetic fields on large spatial scales.
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Chiral MHD scenarios

% 2(us)  2(ps) “Classical” chiral dynamo
Initial chirality /’ ( )+ X\ Rogachevskii et al. 2017 &
0

>0 Schober et al. 2018

(A-B)+ 2<’A‘5> 40

No initial chirality

(A-B)+2<f\‘5> — 0
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Chiral MHD scenarios

Initial chirality

(A-B)—|—2<l)f5> 40

No initial chirality

(A-B)+2<§‘5> — 0

cPrL

“Classical” chiral dynamo

Y A\ Rogachevskii et al. 2017 &
~ 0 >0 Schober et al. 2018
2
(A-B)+ A“” = (A B)
>0 ~ 0 Schober, Fujita, & Durrer 2020
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Generation of chiral asymmetry

Initial condition

strong helical
magnetic field

no chiral
asymmetry

Schober, Fujita, & Durrer 2020

cPrL

log;(time series)

at the expense

r {ps) produced
of (A-B)

1 — (A-B)
e 2ky/A

1 == 2{us)/A \
......... (A -B) + 2(us) /2

_5 4 3 9 -
logm(t/ tn)
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Generation of chiral asymmetry
,

strong helical (ks) DrOdUCEd] [(A . B) re- ]

. L at the expense generated via a
magnetic field of (A - B) Lchiral dynamo
no chiral
asymmetry

log;(time series)

Schober, Fujita, & Durrer 2020

Jennifer
E PFL Schober



Generation of chiral asymmetry
,

strong helical (1) Drod“CEd] [<A - B) re- ] (1s) evolves self-

o at the expense generated via a similarly with &,
magnetic field of (A-B) Lchiral dynamo

no chiral /

asymmetry

log;(time series)

Schober, Fujita, & Durrer 2020
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Generation of chiral asymmetry
r(,u5) produced [(A - B) re- (us) evolves self-

+ strong helical at the expense generated via a imilarly with k&
. similarly wi
magnetic field of (A-B) Lchiral dynamo g
- no chiral
asymmetry

[predicted
analytically
but
without
log-
correction,
Hirono,
Kharzeev,
& Yin
2076]

log;(time series)

Schober, Fujita, & Durrer 2020

Jennifer
E PFL Schober



Generation of chiral asymmetry

Initial condition

strong helical
magnetic field

no chiral
asymmetry

Schober, Fujita, & Durrer 2020

cPrL

log;(time series)

{ps) produced

at the expense
of (A-B)

[(A - B) re- (us) evolves self-
generated via a similarly with &,
Lchiral dynamo
Turbulence
determines
long-term

>evo|ution.

......... (A -B) + 2{us) /A

7 —6
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Generation of chiral asymmetry

Initial condition

strong helical
magnetic field

no chiral
asymmetry

Schober, Fujita, & Durrer 2020

cPrL

loglo(kp)

2.0

4

low Re

high Re
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Chiral MHD scenarios

Initial chirality

(A-B) +

2{us)
A

£0

o

2(ps) _ 2(ps)

A A
>0

“Classical” chiral dynamo
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Chiral MHD scenarios

(A/B) + 2(ps) _ 2(ps) “Classical” chiral dynamo
Initial chirality XA Rogachevskii et al. 2017 &
~ 0

>0 Schober et al. 2018

2
A (A.B>+75/\@=<A-B>
>0 ~ 0 Schober, Fujita, & Durrer 2020
(A-B) + 2{ps) =0 Relevant for Axion inflation
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=—(A-B) Schober et al. 2023
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Decay of helicity balanced by chirality
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Decay of helicity balanced by chirality
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Decay of helicity balanced by chirality

Explanation of decay laws with the
(adopted) Hosking integral:

Classical MHD:
h=A-B

Enr o 149

Hosking &
Schekochifiin
20217,
Zhou et al 2022
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Decay of helicity balanced by chirality

Explanation of decay laws with the
(adopted) Hosking integral:

Tu(R) = / a7 )ydds
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Decay of helicity balanced by chirality

Explanation of decay laws with the Demonstration of conservation of
(adopted) Hosking integral: Hosking integral in simulations:
1000.0 ¢ (a) | b = ' ) 4
IH(R) =/ (h(m)h(m =1 7.)) d3r - - 31623 ~Rf,-’ 7 3
Vis S 100.0f Ol P % .
%i = - 1000
~ - 316
& 100 100 i}
Classical MHD: Chiral MHD: = :
2 > - g,
h=A-B h:A.B+% 1~0§ o
0.1L . . .
1 10 100
Ent oc t 1079 Ent o< t71079
(@]
(A B) x t—2/3 ;f
1—2/3 1:;_
Hosking & (s o
Schekochihin Brandenburg, :
2027, Kamada, & 000 o
Zhou et al 2022 Schober 2023 1 10 100 1000 10000

¢

Jennifer
E PFL Schober



Chiral MHD scenarios

(A/B) + 2(ps) _ 2(ps) “Classical” chiral dynamo
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Chiral MHD scenarios

Initial chirality

£0

No initial chirality

“Classical” chiral dynamo
Rogachevskii et al. 2017 &

}/B (é\ts)

>> 0 Schober et al. 2018
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Schober, Fujita, & Durrer 2020

Relevant for Axion inflation
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Chiral MHD scenarios
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Inhomogeneous chiral MHD dynamos

- week magnetic
seed field B

- large chiral

asymmetry is
(non-uniform,

(1s)(to) = 0)
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Inhomogeneous chiral MHD dynamos

Initial condition

week magnetic
seed field B
large chiral

asymmetry is
(non-uniform,

(1s)(to) = 0)

Toy models at initial time:
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Inhomogeneous chiral MHD dynamos

Initial condition

week magnetic
seed field B
large chiral

asymmetry is
(non-uniform,
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Inhomogeneous chiral MHD dynamos

Initial condition

week magnetic
seed field B
large chiral

asymmetry is
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Inhomogeneous chiral MHD dynamos

Initial condition

- week magnetic
seed field B

- large chiral

asymmetry is
(non-uniform,
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Inhomogeneous chiral MHD dynamos

Initial condition —
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Inhomogeneous chiral MHD dynamos

Initial condition

- week magnetic
seed field B

- large chiral

asymmetry is
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Inhomogeneous chiral MHD dynamos

week magnetic

1
seed field B 3.6 %10
large chiral 2.7 x 10*
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Inhomogeneous chiral MHD dynamos

week magnetic
seed field B s - 3.6 x 1078
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Inhomogeneous chiral MHD dynamos
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Inhomogeneous chiral MHD dynamos
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Inhomogeneous chiral MHD dynamos

Initial condition 0
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Inhomogeneous chiral MHD dynamos

Initial condition

- week magnetic
seed field B

- large chiral

asymmetry is
(non-uniform,

(1s)(to) = 0)

Random fluctuations
spectrum:
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Inhomogeneous chiral MHD dynamos

Initial condition

week magnetic
seed field B

large chiral

asymmetry is
(non-uniform,

(1s)(to) = 0)

Random fluctuations
spectrum:

Es(k,t =0) ox k2
where

/ Es(k,t) dk = (u2) -

Averages are defined by:

kmax 1
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fokmax E]\I (k) dk

<X>int = l

cPrL

/2

Mean-field dynamo analysis:
Budget equation for magnetic helicity:

%E+V-F:2n,u_5?—2z-§—2nb(v X b)
with € = u x b = ayB — n1(V x B).

— At saturation: oy =ni; =
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Inhomogeneous chiral MHD dynamos
Mean-field dynamo analysis:

week magnetic Budget equation for magnetic helicity:
seed field B 5_ o
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Inhomogeneous chiral MHD dynamos
,
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Inhomogeneous chiral MHD dynamos

_ (PRL, 2022)-
- week magnetic

seed field B - A chiral dynamo occurs if us fluctuations of are
. large chiral correlated on length scales much larger than the
asymmetry /is dynamo instability scale.

(non-uniform,
(ps)(to) = 0)

Results of Schober. Rogachevskii & Brandenburg
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Inhomogeneous chiral MHD dynamos

_ (PRL, 2022)-
- week magnetic

seed field B - A chiral dynamo occurs if us fluctuations of are
correlated on length scales much larger than the
dynamo instability scale.

- A mean us is produced from initial fluctuations.

Results of Schober. Rogachevskii & Brandenburg

- large chiral
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Inhomogeneous chiral MHD dynamos

_ (PRL, 2022)-
- week magnetic

seed field B - A chiral dynamo occurs if us fluctuations of are

correlated on length scales much larger than the

asymmetry /s dynamo instability scale.

(non-uniform, - A mean us is produced from initial fluctuations.

(15 (to) = 0) + Mean-field dynamos exist and are well described by
the magnetic « effect.

Results of Schober. Rogachevskii & Brandenburg

- large chiral
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Chiral MHD scenarios

Initial chirality

£0

No initial chirality

“Classical” chiral dynamo
Rogachevskii et al. 2017 &

}/B (55)

>> 0 Schober et al. 2018
2
(A.B>+7@A5 =(A-B)
>0 ~

Schober, Fujita, & Durrer 2020

Relevant for Axion inflation
Brandenburg Kamada, &
B) Schober et al. 2023
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Chiral MHD scenarios

Initial chirality

£0

No initial chirality

cPrL

B) + 2(us) “Classical” chiral dynamo
Y Rogachevskii et al. 2017 &
>> 0 Schober et al. 2018
2(p5
(A-B)+ X = (A - B)
>0 ~ Schober. Fujita, & Durrer 2020
(A-B) + 2(ps) -0 Relevant for Axion inflation
L__é__J Brandenburg Kamada, &
B) Schober et al. 2023
(A-B)+ < =0 but p5,rms7 0 Schober,
~0 0 Rogachevskii &
~ - Brandenburg 2022
2
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Chiral magnetic waves

The chiral separation effect (CSE) describes the interaction between the
chiral chemical potential w5 and the chemical potential
H = MR T UL .
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Chiral magnetic waves

The chiral separation effect (CSE) describes the interaction between the
chiral chemical potential w5 and the chemical potential
H = MR T UL .

Full system of equations, including the CME and the CSE:

0B

DU

pE:(VxB)xB—Vp—FV-(ZVpS)

Dp

DA

D,u5_ D. V4 An [B B B? Cs(B -V

Vs D,y + A [B- (V% B) — s B [- Co(B -9
Dp 4

B = —D,Vu—Cu(B-V)us Kharzeev & Yee (2011)
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Chiral magnetic waves

Preliminary simulations:

time normalized by CMW frequency
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Chiral magnetic waves

Preliminary simulations:

time normalized by CMW frequency
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“Simulations of chiral
magnetohydrodynamics”

-Outline-
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The evolution of
primordial
magnetic fields
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one of the chiral
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Essence of this talk

The evolution of Chiral MHD
primordial is very
magnetic fields different
is coupled to the from
one of the chiral classical
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non-linear
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Essence of this talk

The evolution of Chiral MHD Application to studying the early Universe:
primordial is very

magnetic fields different
is coupled to the from
one of the chiral classical
asymmetry. MHD and we
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1 effects with
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Essence of this talk

The evolution of Chiral MHD Application to studying the early Universe:
primordial is very

magnetic fields different
is coupled to the from
one of the chiral classical
asymmetry. MHD and we
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non-linear
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Essence of this talk

( The evolution of ) Chiral MHD ) Application to studying the early Universe: ]
primordial iS Very 4N Zeemann splitting
magnetic fields different -
is coupled to the from °r
one of the chiral classical st E
asymmetry. MHD and we %-10 z: -
are exploring % |8 I
L ) non-linear T e 8
2 TP Al effects with || ..
I, direct
S Od numerical N
simulations. A ‘
\_ J \_ y | J

More details: Schober, Rogachevskii, & Brandenburg, Geophysical & Astrophysical Fluid

Dynamics, 2020
Schober, Rogachevskii, & Brandenburg, PRL, 2022
Brandenburg, Kamada, & Schober, arXiv: 2302.00512
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=» Technical aspects on chiral MHD simulations

Thanks for your attention!

]- Latest applications
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