Role of helicities for amplification of the magnetic field

Jin Matsumoto

Keio Institute of Pure and Applied Sciences (KiPAS), Keio University

Collaborators: Naoki Yamamoto (Keio University) Di-Lun Yang (Academia Sinica) Tomoya Takiwaki (National Astronomical Observatory of Japan) Kei Kotake (Fukuoka University)

- Introduction
 - Core-collapse supernova

- Global MHD simulations of core-collapse supernova

Chiral magnetohydrodynamic (MHD) simulations in local box

- Key physics for magnetic field amplification in this talk

Core-collapse supernova

David Malin / Australian Astronomical Observatory

- SN 1987A

- Neutrino heating to explode massive star Large Magellanic Cloud (49 kpc \sim 16x10⁴ light years) Magnetic field may change explosion mechanism. Tomoya's talk (yesterday) and Naoki's talk (this morning)

- Explosion energy: ~ 10⁵¹ ergs

http://www-sk.icrr.u-tokyo.ac.jp/sk/_images/photo/sk/shinsei_gazou02.jpg

$\partial_t B = \nabla \times$

- α : just a coefficient

If the magnetic field evolves following linear equation,

$$(\alpha B) + \eta \Delta B$$

the magnetic field is exponentially amplified.

 η : magnetic resistivity

- -> dispersion relation:

$$\sigma = \alpha k - \eta k^2$$

$$= -\eta [k - \alpha/(2\eta)]^2 + \alpha^2$$

parabolic equation of k

Key physics in this talk

• Chiral MHD equation (e.g., Brandenburg+17, Masada+18, Schober+22, JM+22) induction equation: $\partial_t B = \nabla \times (v \times B) + \eta \Delta B + \eta \nabla \times (\xi_B B)$

$$\frac{\partial \langle \boldsymbol{B} \rangle}{\partial t} = \nabla \times (\alpha \langle \boldsymbol{B} \rangle)$$

kinetic helicity in rotating convection system

Origin of α

(effective) Chiral Magnetic effect e.g., Vilenken 80, Nielsen & Ninomiya 83, Fukushima+08

•Mean-field theory of magnetic field (e.g., Brandenburg & Subramanian 05)

induction equation if we consider only turbulent component:

 $+ \eta_t \Delta \langle \boldsymbol{B} \rangle$

$$\alpha \equiv -\frac{1}{3}\tau_{\rm cor}h_{\rm K}$$
$$\eta_t \equiv \frac{1}{3}\tau_{\rm cor}\langle {v'}^2 \rangle$$

in the context of core-collapse supernova (CCSN)

Chiral magnetohydrodynamic (MHD) simulations in local box

Chiral MHD simulations

Chiral MHD simulations in the context of CCSN (Masada+18, JM22)

Basic equations for chiral MHD

conservation of total helicity:

$$= 0 ,$$

$$- BB + \left(P + \frac{B^2}{2}\right)\mathbf{I} = S ,$$

$$pv^2 + \frac{\Gamma}{\Gamma - 1}P v + E \times B = S \cdot v - J_{\text{CME}}$$

$$p \nabla \times (\xi_B B) , \quad \xi_B = \frac{1}{4} \left(\frac{3}{\pi^4}\right)^{1/3} [(n_e + n_{5,\text{eff}})^{1/3} - (n_e - n_5)]$$

$$B , \quad \leftarrow \text{ effective chiral charge}$$

$$Q_5 + \frac{H_{\text{mag}}}{4\pi^2} = 0$$

 $\frac{d}{dt}$

$$H_{\rm mag} \equiv \int d^3 x A \cdot B$$

Chiral MHD simulations

Chiral plasma instability (CPI, Akamatsu+13):

Exponential amplification of magnetic field

Important feature for CCSN but its mechanism is unclear.

Chiral MHD simulations

 $t/\tau_{\rm CPI}$ conservation of total helicity:

$$\frac{d}{dt}\left(Q_5 + \frac{H_{\text{mag}}}{4\pi^2}\right) = 0$$

becomes larger over time.

Important feature for CCSN but its mechanism is unclear.

Contribution for evolution of the magnetic field

induction equation: $\partial_t B = \nabla (\nabla B) + \eta \Delta B + \eta \nabla \times (\xi_B B)$

Condition for inverse cascade of magnetic field

Chiral MHD simulations in the context of CCSN (Masada+18, JM22)

large. $\lambda_{\rm CPI} \equiv 2\pi/k_{\rm CPI} = 4\pi/\xi_B$

- -> dispersion relation:

$$\sigma = \alpha k - \eta k^2$$

$$= -\eta [k - \alpha/(2\eta)]^2 + \alpha^2$$

parabolic equation of k

Key physics in this talk

- -> dispersion relation:

$$\sigma = \eta \xi_B k - \eta k^2$$

$$= -\eta [k - \xi_B/2]^2 + \eta \xi_B^2/$$

parabolic equation of k

Key physics in this talk

Condition for inverse cascade of magnetic field

Chiral MHD simulations in the context of CCSN (Masada+18, JM22)

becomes larger over time.

Since ξ_B decreases as time passes, typical wavelength of CPI becomes large. $\lambda_{\rm CPI} \equiv 2\pi/k_{\rm CPI} = 4\pi/\xi_B$

Inverse cascade of magnetic field is important feature for CCSN.

The condition that the process of the CPI is dominant is

 $|v| < \eta |\xi_B|$

Global MHD simulations of core-collapse supernova

- 3DnSNe code (Takiwaki+16) updated to MHD (See JM+20)
- approximate Riemann solver: HLLD (Miyoshi & Kusano 05)
- three-flavour neutrino transport based on Isotropic Diffusion Source Approximation (Kotake+18)
- EOS: Lattimer & Swesty (1991; incompressibility K=220 MeV)
- progenitor : s27.0 (Woosley+02)
- (e.g., Suwa+07, Takiwaki+14, Obergaulinger+14) z [10³ km]
- distribution of B-field: uniform (r < 1000 km) + dipole (r > 1000 km) • initial B-field: 10¹² (strong field model) G • vector potencial: $A_{\phi} = \frac{B_0}{2} \frac{r_0^3}{r_0^3 + r_0^3} r \sin \theta$,
- grid spacing: 480 (r) x 64 (θ) x 128 (ϕ), 0 < r < 5000 km
- 2D run -> 3D run at t_{pb} =13 ms to save computational resources

Settings

• rigid rotation $\omega_0 = 0.3, 0.1, 0 \text{ rad/s}$

Initial condition of B-field

possible formation scenarios of magnetar

- turbulent dynamo amplification in a rapidly rotating PNS (Thompson+93)
- fossil field hypothesis (magnetic flux conservation) (Ferrario+06)

otating PNS (Thompson+93) vation) (Ferrario+06)

onservation:
$$B_{\rm PNS} \sim 10^{15} \, {\rm G} \left(\frac{B_{0,r=1000 \, \rm km}}{10^{12} \, {\rm G}} \right) \left(\frac{30 \, \rm km}{r_{\rm PNS}} \right)$$

10¹² G (strong field model): -> 10¹⁵ G (r < 30km) < - - magnetar class

10¹⁰ G (weak field model): -> 10¹³ G (r < 30km)

shock evolution

Magnetic pressure driven explosion occurs in rotating models. The magnetic field is fully amplified due to the effect of turbulence.

Dependence of the rotation

Explosion energy in faster explosion model is larger.

Distribution of B-field

onset of neutrino-driven convection

after shock revival

Amplification of the magnetic field

mean field theory

$$\mathbf{v}(r,\theta,\phi) = \langle \mathbf{v} \rangle (r,\theta) + \mathbf{v}'(r,\theta)$$
$$\mathbf{B}(r,\theta,\phi) = \langle \mathbf{B} \rangle (r,\theta) + \mathbf{B}'(r,\theta)$$

induction equation:

$$\frac{\partial \langle \boldsymbol{B} \rangle}{\partial t} = \nabla \times (\langle \boldsymbol{v} \rangle \times \langle \boldsymbol{B} \rangle - \eta \nabla \times \langle \boldsymbol{B} \rangle)$$
$$\boldsymbol{\epsilon} \equiv \alpha \langle \boldsymbol{B} \rangle - \eta_t \nabla \times \langle \boldsymbol{B} \rangle$$
$$\boldsymbol{\alpha} \equiv -\frac{1}{3} \tau_{\rm cor} h_{\rm K}$$
$$\eta_t \equiv \frac{1}{3} \tau_{\rm cor} \langle {v'}^2 \rangle$$

Brandenburg+05

Amplification of the magnetic field

mean field theory

$$\mathbf{v}(r,\theta,\phi) = \langle \mathbf{v} \rangle (r,\theta) + \mathbf{v}'(r,\theta)$$
$$\mathbf{B}(r,\theta,\phi) = \langle \mathbf{B} \rangle (r,\theta) + \mathbf{B}'(r,\theta)$$

induction equation:

$$\frac{\partial \langle \boldsymbol{B} \rangle}{\partial t} = \nabla \times (\langle \boldsymbol{v} \rangle \times \langle \boldsymbol{B} \rangle - \eta \nabla \times \langle \boldsymbol{B} \rangle)$$
$$\boldsymbol{\epsilon} \equiv \alpha \langle \boldsymbol{B} \rangle - \eta_t \nabla \times \langle \boldsymbol{B} \rangle$$
$$\boldsymbol{\alpha} \equiv -\frac{1}{3} \tau_{\rm cor} h_{\rm K}$$
$$\eta_t \equiv \frac{1}{3} \tau_{\rm cor} \langle {v'}^2 \rangle$$

Brandenburg+05

Amplification of the magnetic field

mean field theory

$$\mathbf{v}(r,\theta,\phi) = \langle \mathbf{v} \rangle (r,\theta) + \mathbf{v}'(r,\theta)$$
$$\mathbf{B}(r,\theta,\phi) = \langle \mathbf{B} \rangle (r,\theta) + \mathbf{B}'(r,\theta)$$

induction equation:

$$\frac{\partial \langle \boldsymbol{B} \rangle}{\partial t} = \nabla \times (\langle \boldsymbol{v} \rangle \times \langle \boldsymbol{B} \rangle - \eta \nabla \times \langle \boldsymbol{B} \rangle)$$
$$\boldsymbol{\epsilon} \equiv \alpha \langle \boldsymbol{B} \rangle - \eta_t \nabla \times \langle \boldsymbol{B} \rangle$$
$$\boldsymbol{\alpha} \equiv -\frac{1}{3} \tau_{\rm cor} h_{\rm K}$$
$$\eta_t \equiv \frac{1}{3} \tau_{\rm cor} \langle {v'}^2 \rangle$$

Brandenburg+05

Amplification of the magnetic field

Amplification of the magnetic field

Growth rate of the magnetic energy

Time after bounce [ms]

Magnetic pressure amplified due to α -effect is responsible for fast explosion in our rotating model.

Mean magnetic field is amplified by α -effect.

In addition, turbulent magnetic field is also amplified via α -dynamo action of mean magnetic field.

Induction equation for turbulent magnetic field:

> $\partial B'$ $= \nabla \times (\mathbf{v}' \times \langle \mathbf{B} \rangle)$ ∂t mean magnetic field

Summary

Key physics of the magnetic field amplification:

$\partial_t B = \nabla \times (\alpha B) + \eta \Delta B$

Exponential amplification of the magnetic field

- Chiral MHD simulations in local box
 - The condition that process of the CPI is dominant is $|v| < \eta |\xi_B|$.
- Global MHD simulations of core-collapse supernova
 - α -dynamo (kinetic helicity) is responsible for the exponential
 - amplification of the magnetic field in the gain region.
 - Magnetic pressure driven explosion in rotating model

