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Neutrino-neutrino forward scattering
Fuller, Qian, Pantaleone, Sigl, Raffelt, Sawyer, Carlson, Duan, . . .

diagonal contribution (A) does
not impact flavor mixing

off-diagonal term (B) equivalent
to flavor/momentum exchange
between two neutrinos

total flavor is conserved

Important effect if initial distributions
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Two-flavor approximation and the iso-spin Hamiltonian

Consider two active flavors (νe,νx) and encode flavor amplitudes for a
neutrino with momentum pi into an SU(2) iso-spin:

|Φi⟩ = cos(ηi)|νe⟩+ sin(ηi)|νx⟩ ≡ cos(ηi)|↑⟩+ sin(ηi)|↓⟩

A system of N interacting neutrinos is then described by the Hamiltonian

H =
∑
i

∆m2

4Ei
B⃗ · σ⃗i + λ

∑
i

σz
i +

µ

2N

∑
i<j

(
1−cos(ϕij)

)
σ⃗i · σ⃗j

vacuum oscillations: B⃗ = (sin(2θmix), 0,− cos(2θmix))

interaction with matter: λ =
√
2GFρe

neutrino-neutrino interaction: µ =
√
2GFρν

dependence on momentum direction: cos(ϕij) =
p⃗i

∥p⃗i∥ · p⃗j

∥p⃗j∥

for a full derivation, see e.g. Pehlivan et al. PRD(2011)
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Finite size effects and thermodynamic limit

H =

N∑
i=1

B⃗i · σ⃗i +
µ

2N

N∑
i<j

vij σ⃗i · σ⃗j

the quantum system is defined
in some finite volume V

we have a finite number N of
neutrinos within the box

the neutrino density ρν (and
thus µ) is given by N/V

For astrophysically relevant predictions need to understand how the system
behaves when V → ∞ and N → ∞ while keeping ρν = N/V constant
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The Mean Field approximation

The equations of motion for the flavor polarization ⟨σ⃗i⟩ are
d

dt
⟨σ⃗i⟩ = B⃗i × ⟨σ⃗i⟩+

µ

2N

∑
j ̸=i

vij⟨σ⃗j × σ⃗i⟩

The Mean Field approximation replaces ⟨σ⃗j × σ⃗i⟩ with ⟨σ⃗j⟩ × ⟨σ⃗i⟩ so that

d

dt
⟨σ⃗i⟩ =

B⃗i +
µ

2N

∑
j ̸=i

vij⟨σ⃗j⟩

× ⟨σ⃗i⟩

In this way we obtain a closed system
of 3N coupled differential equations

efficient solutions for systems
containing N ≈ O(104−5)
neutrino amplitudes [≈ O(100)
energies and ≈ O(100) angles ]
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Why a Mean Field approximation?

H =

N∑
i=1

B⃗i · σ⃗i +
µ

2N

N∑
i<j

vij σ⃗i · σ⃗j

group similar neutrinos into
beams with M neutrinos each

P⃗i =
1

M

M∑
a=1

σ⃗ia

we have a finite number N of
beams within the box

the neutrino density ρν (and
thus µ) is given by (NM)/V

Size of quantum fluctuations

⟨P⃗ 2
i ⟩ − ⟨P⃗i⟩2 =

1

M
+
(
1− ⟨P⃗i⟩2

) For initial state ⟨P⃗i⟩2 = 1

MF approx ≡ M → ∞, N fixed
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Beyond Mean Field effects: a quick history

Apr ’03 speedup through entanglement τ ∼ µ−1
Bell et al. PLB (2003)

Jul ’03 in a highly symmetric limit the MF prediction is qualitatively
correct up to times τ ∝ µ−1

√
N → ∞ Friedland&Lunardini JHEP (2003)

Aug ’04 neutrino-like models seem to produce τ ∝ µ−1 log(N) Sawyer (2004)

2019 exact simulations for systems with small N show substantial
entanglement buildup (⟨P⃗i⟩2 < 1) Cervia et al. PRD(2019), Rrapaj PRC(2020)

increasing effort in tackling the problem using a variety of methods:
diagonalization, tensor networks and semiclassical approaches

Cervia et al. (2021), Patwardhan et al. (2021), AR (2021)2, Xiong (2022), Martin, AR, et al. (2022),

AR, Rrapaj, Xiong (2022), Lacroix et al. (2022), . . .

Great potential for many-body simulations on quantum devices

Hall, AR, et al. (2021), Yeter-Aydeniz et al. (2022), IlIa & Savage (2022), Amitrano, AR, et al. (2023)
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Beyond Mean Field effects: a simple example

H

M
= B⃗a · P⃗a + B⃗b · P⃗b +

µ

4
P⃗a · P⃗b

The initial state has ⟨P⃗a⟩ × ⟨P⃗b⟩ = 0

If we choose B⃗a = B⃗b parallel to ⟨P⃗b⟩, no flavor evolution in MF approx.

analytical solution evolves over τ ≈ µ−1
√
M Friedland&Lunardini (2003)

If we choose B⃗a = −B⃗b parallel to ⟨P⃗b⟩, no flavor evolution in MF approx.

numerical solution evolves over τ ≈ (Baµ)
− 1

2 logM AR (2021), Xiong (2022)

happens only if Ba ≲ µ (bipolar oscillations in perturbed initial state)

Qualitative difference between these results can be explained in terms of
Dynamical Phase Transitions leading to the bipolar instability AR (2021)
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Beyond Mean Field effects: more simple examples

Same effect observed for N = 3, without vacuum oscillations, when
perturbed system has unstable fast modes AR, E. Rrapaj, Z. Xiong PRD(2022)

Dynamical Phase Transition appears equivalent to bipolar (slow) case

fast/slow modes shown equivalent in MF D.Fiorillo & G.Raffelt PRD(2023)
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Beyond Mean Field effects: even more simple examples
Similar effect observed for finite values of the mixing angle B⃗i × ⟨P⃗ ⟩i ̸= 0
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J. Martin, AR, H. Duan, J. Carlson, V. Cirigliano PRD(2022)

For small M oscillations scale as log(M) and convergence to the MF

solution depends strongly on the mixing angle: M ≈ µ2

ω2 sin(2θ)2

Oscillation speedup is driven by quantum fluctuations

δP 2 =
1

M
+
(
1− ⟨P⃗i⟩2

) ⟨P⃗i⟩2 = 1 individual neutrino in pure state

⟨P⃗i⟩2 < 1 individual neutrino in mixed state
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Beyond Mean Field effects: even more simple examples II
J. Martin, AR, H. Duan, J. Carlson, V. Cirigliano PRD(2022)
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Beyond Mean Field effects: even more simple examples II
J. Martin, AR, H. Duan, J. Carlson, V. Cirigliano PRD(2022)
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Quantum Computing and Quantum Simulations

R.Feynman(1982) we can use a controllable quantum system to simulate
the behaviour of another quantum system
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Quantum simulation of collective neutrino oscillations

H =
∑
i

ωiB⃗ · σ⃗i +
µ

2N

∑
i<j

Jij σ⃗i · σ⃗j

with only 2 flavors direct map to spin 1/2 degrees of freedom (qubits)

only one- and two-body interactions ⇒ only O(N2) terms

all-to-all interactions are difficult with reduced connectivity

SWAP network SWAP qubits every time we apply
time-evolution to neighboring terms

in N steps we perform full evolution
using only

(
N
2

)
two qubit gates

NOTE: final order will be reversed

Kivlichan et al. PRL (2018)

B.Hall, AR, A.Baroni, J.Carlson PRD(2021)
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Entanglement evolution and error mitigation with N = 4
B.Hall, AR, A.Baroni, J.Carlson PRD(2021)
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Entanglement evolution and error mitigation with N = 4
B.Hall, AR, A.Baroni, J.Carlson PRD(2021)
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Accuracy in flavor evolution (≈ Fall 2020)

Entanglement is useful to understand collective oscillation mechanism but
priority is to predict flavor evolution.
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Fidelity of quantum hardware is improving fast

The device used for the previous results was Vigo with a QV of 16

QV = 2n ≈ we can run n full layers on n qubits with fidelity ≥ 66%
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Recent progress in porting the scheme to trapped ions
V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, PRD (2023)

N = 4 neutrinos, one time step
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Practical advantages of trapped ion devices
V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, PRD (2023)

all-to-all connectivity allows a reduction in circuit depth and the
possibility of exploring different orderings for the decomposition

removing SWAPs allows for a big reduction in number of rotations

very low infidelities: ≈ 5× 10−5 one-qubit, ≈ 3× 10−3 two-qubit
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Recent progress in porting the scheme to trapped ions II
V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, PRD (2023)

N = 8 neutrinos, one time step
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Recent progress in porting the scheme to trapped ions III
V.Amitrano, AR, P.Luchi, F.Turro, L.Vespucci, F.Pederiva, PRD (2023)

N = 4 neutrinos, multiple time steps

the the Last two points required: ≈ 350 two-qubit gates over 8 qubits
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Current limitations of digital quantum simulations
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current and near term digital quantum devices
have limited fidelity and might not scale much
beyond N = O(10) neutrinos in next years

Possible paths to scalability in the meantime

Analog Quantum Simulators

figure from Zhang et al Nature(2017)

Describe low entanglement
states with Tensor Networks
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Collective oscillations and entanglement scaling
AR, PRD 104, 103016 (2021) & PRD 104, 123023 (2021)
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Why is this interesting?

entanglement scaling provides general criterion for appearance of
collective modes in full many-body treatment

entropy scaling as log(N) ⇒ large ab-initio simulations possible

MPS method fails when entanglement too large ⇒ we can use this to
detect interesting regimes to study on quantum simulators!
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Summary and perspectives

beyond mean field effects in collective neutrino oscillations are an
important systematic that needs to be better understood

small N large M behavior shows possibility of non-negligible effects
when unstable modes are present and mixing angles are small
large N small M behavior computationally very demanding but some
progress already now on classical computers See Josh Martin’s talk
what thermodynamic limit is more suitable for supernovae?

even the basic 2-flavor model for collective oscillations poses a
challenging many-body problem well suited to quantum technologies

first calculations on small scale digital devices show promise in
studying flavor evolution and achievable fidelity is advancing at a
rapid pace (N = 12 only few months ago [Illa & Savage arXiv:2210.08656])

analog trapped ion devices are an ideal platform to study mid-size
systems as the interactions can be embedded in a natural way

tensor network methods can help push the boundary of classical
simulations and identify interesting regimes to study with simulators
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Collective oscillations with MPS

H = −δω
2

 ∑
i∈{1,...,N/2}

σz
i −

∑
i∈{N/2+1,...,N}

σz
i

+
µ

2N

∑
i<j

σ⃗i · σ⃗j ,

MF predicts no evolution, MPS has oscillations for 0 ≤ δω/µ ≲ 1
=
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Dynamical phase transitions
Heyl et al. PRL (2013), Heyl PRL (2015), Heyl RPP (2018)

Quantum quench protocols

1 the system starts as the ground-state of an initial Hamiltonian H0

2 at time t = 0 we switch to a different Hamiltonian H and evolve

Dynamical critical behavior encoded in Loschmidt echo

L(t) =
∣∣⟨Ψ0|e−iHt|Ψ0⟩

∣∣2 N≫1−−−→ e−Nλ(t)

Loschmidt rate λ(t) plays a similar role as the free energy in equilibrium.

H(h) = −
∑
⟨ij⟩

ZiZj + h
∑
i

Xi

start in ground-state for h → ∞
quench across critical point at h = 1

Heyl PRL (2015)
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Quantum quench protocols

1 the system starts as the ground-state of an initial Hamiltonian H0

2 at time t = 0 we switch to a different Hamiltonian H and evolve

Dynamical critical behavior encoded in Loschmidt echo

L(t) =
∣∣⟨Ψ0|e−iHt|Ψ0⟩

∣∣2 N≫1−−−→ e−Nλ(t)

Loschmidt rate λ(t) plays a similar role as the free energy in equilibrium.

H(h) = −
∑
⟨ij⟩

ZiZj + h
∑
i

Xi

start in ground-state for h → ∞
quench across critical point at h = 1

Schmitt & Heyl SciPost Phys (2018)
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DPT for systems with degenerate ground spaces

Heyl PRL (2014)

HXXZ = J
∑
i

[XiXi+1 + YiYi+1 +∆ZiZi+1]

disordered gapless phase for ∆ < 1

anti-ferromagnetic phase for ∆ > 1

critical point at ∆ = 1

|Ψ0⟩ =| ↑↓↑↓ · · · ⟩ |Ψ′
0⟩ =| ↓↑↓↑ · · · ⟩

Loschmidt Echo for degenerate ground-states

L0(t) =
∣∣⟨Ψ0|e−itH |Ψ0⟩

∣∣2 L1(t) =
∣∣⟨Ψ′

0|e−itH |Ψ0⟩
∣∣2 ,

DPT ⇔ non-analytic behavior of the total echo L(t) = L0(t) + L1(t)
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DPT for systems with degenerate ground spaces II

L0(t) =
∣∣⟨Ψ0|e−itH |Ψ0⟩

∣∣2 L1(t) =
∣∣⟨Ψ′

0|e−itH |Ψ0⟩
∣∣2 ,

DPT ⇔ non-analytic behavior of the total echo L(t) = L0(t) + L1(t)

Both scale exponentially in system size, but with different rates, there is a
kink forming if the order between L0(t) and L1(t) changes at some t = t∗
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Simple neutrino model
Friedland & Lunardini (2003), AR (2021)

H =
1

2N

∑
i<j

σ⃗i · σ⃗j =
1

N
S2 + const. .

Initialize system in |Ψ(0)⟩ = |↓⟩⊗N/2 ⊗ |↑⟩⊗N/2 and compute the flavor
persistence p(t) = (1− ⟨Ψ(t)|σ1|Ψ(t)⟩)/2 for increasing system size
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Simple neutrino model II

H(x) =
x

2N
S2 + (1− x)

∑
a∈A

∑
b∈B

ZaZb ,

start at x = 0 and evolve with x = 1. State is |Ψ0⟩ = |↓⟩⊗N/2 ⊗ |↑⟩⊗N/2.
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Crossing time t∗ diverges as
√
N ⇒ no evolution for a large system!
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Many-body speedup in unphysical model
Bell,Rawlinson,Sawyer PLB(2003), AR (2021)

HBRS =
1

2N

∑
i<j

Jij (XiXj + YiYj +∆ZiZj)

with Jij = JAA for (i, j) in A or B and Jij = JAB otherwise. Our initial
state is (degenerate) gs of HBRS in the limit ∆ ≫ 1 and JAA < JAB
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Many-body speedup in unphysical model II
Bell,Rawlinson,Sawyer PLB(2003), AR (2021)

HBRS =
1

2N

∑
i<j

Jij (XiXj + YiYj +∆ZiZj)

with Jij = JAA for (i, j) in A or B and Jij = JAB otherwise. Our initial
state is (degenerate) gs of HBRS in the limit ∆ ≫ 1 and JAA < JAB
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Many-body speedup in a physical model
To engineer a “DPT” we can ensure the system crosses a critical point

H = −δω
2

(∑
i∈A

σz
i −

∑
i∈B

σz
i

)
+

µ

2N

∑
i<j

σ⃗i · σ⃗j ,

AFM (µ > 0) transition at δω = 0 between gapped phases
FM (µ < 0) transitions at δω = ±µ between gapped and gapless phases
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Many-body speedup in a physical model II
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Entanglement entropy for bipolar model
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