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Fast neutrino-flavor conversion may ubiquitously occur in 
CCSN and BNSM

Nagakura et al. 2021
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FIG. 4. Space-time diagram for appearance of ELN crossings. The bold red line portrays a time
trajectory for the shock wave in exploding models. The thin and dashed line represents the counterpart
of shock trajectory for non-exploding models. The color code for enclosed regions distinguishes types
of ELN crossing. The green, blue, and brown color denote Type I, Type II, and any type of crossings,
respectively. In each region, we provide some representative characteristics of ELN-crossings. The
remark ”Exp-only” denotes that the ELN-crossing appears only in exploding models. See text for
more detail.

anism for these is di↵erent. In Sec. III B, we conduct an
in-depth analysis of their physical origin.

We provide a schematic space-time diagram of ELN
crossings in Fig. 4. This figure summarizes the over-
all trends of crossings observed in our CCSN models.
We note that crossings relevant to PNS convection and
the pre-shock region drawn in Fig. 4 are not included in
Fig. 3. There is a technical reason why we do not include
the case with PNS convection in Fig. 3. This issue will be
discussed later. To facilitate the readers’ understanding,
the color in Fig. 4 distinguishes types of ELN-crossings.
Below, we turn our attention to the physical origin of
ELN crossing generation.

B. Generation mechanism of ELN crossings

1. Type-II crossings at early post-bounce phase

Let us start by analyzing the Type-II crossings that
appear at the early post-bounce phase (⇠ 100 ms) in all
CCSN models (see the top left panel in Fig. 3). We first
present the result from the 12 solar mass model as a rep-
resentative case. The progenitor-dependence is discussed
later. In Fig. 5, we show Mollweide projections of the
ELN crossing and some important quantities at 130 km
for the 12 solar mass model case. We find that the Type
II crossing has a rather scattered distribution (see the

top left panel). To see the trend more quantitatively, we
show �Gout in the left middle panel in Fig. 5, which cor-
responds to the ELN at µ = 1. Here �Gout and �Gin

are defined as follows. The energy-integrated number of
neutrinos at µ = 1 and �1 are written as

Gout =

Z
d(

"3

3
)fout("),

Gin =

Z
d(

"3

3
)fin("),

(2)

respectively, where " denotes the neutrino energy in units
of MeV. We stress that both fout and fin in Eq. 2 are the
basic output of our angular reconstruction computation
complemented by the ray-tracing method (see Sec. II B).
Here �G is the di↵erence of the ⌫e and ⌫̄e G values:

�G = G⌫e �G⌫̄e , (3)

where we omit the subscript ”out” or ”in” in Eq. 3. As
shown in Fig. 5, we find that ⌫̄e dominates over ⌫e in
some regions (blue-colored area), and these regions are
in one-to-one correspondence to the regions of Type-II
crossings. The one-to-one correspondence is attributed
to the fact that ⌫e always overwhelms ⌫̄e in µ = �1
(incoming) direction.
We find some interesting correlations between the

Type-II crossings and other physical quantities. These
correlations provide useful insight for studying the phys-
ical origin of the crossings. To quantify the correlations,
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collapse SNe, an exact numerical solution of the flavor
distribution of propagating neutrinos in mergers is not
yet a↵ordable. However, we can estimate whether favor-
able conditions for fast flavor conversions are present in
compact binary merger remnants by adopting analytical
tools. To this purpose, we rely on the dispersion relation
(DR) approach recently developed in Ref. [42].

The outline of our manuscript is as follows. First, we
model the neutrino emission from compact binary merger
remnants by introducing a simple two-neutrino-emitting
disk model motivated by existing hydrodynamical simu-
lations in Sec. II. In Sec. III, we introduce the equation of
motion governing the neutrino flavor evolution and the
DR in the flavor space. Results on the occurrence of
temporal and spatial instabilities in the flavor space are
presented in Sec. IV and Sec. V, respectively. Caveats
on our main findings are discussed in Sec. VI, and con-
clusions are reported in Sec. VII.

II. TWO-NEUTRINO-EMITTING DISK MODEL

In order to examine whether fast flavor conversion oc-
curs above the merger remnants, we refrain from relying
on a specific merger model given the uncertainties intrin-
sic to the neutrino transport adopted in hydrodynamical
simulations of these objects. We instead rely on the sim-
ple two-neutrino-emitting disk model shown in Fig. 1 (see
also Appendix A). The choice of the model parameters
is, however, guided by the hydrodynamical simulation of
the massive NS–disk evolution [12].

In addition to the overall protonization discussed in
the previous section, an important feature of merger rem-
nants is that the spectral-averaged decoupling surfaces of
⌫e and ⌫̄e are spatially well separated. This can be seen,
for example, in Fig. 12 of Ref. [11] and Fig. 3 of Ref. [34]
showing the size ratio of the decoupling surface of ⌫̄e to
that of ⌫e ⇠ 3/4. This is a consequence of the neutron
richness of the remnant system and the spatial extension
of the accretion disk which leads to a smaller density
gradient with respect to the SN proto-neutron star.

Based on the above discussion, we assume that for a
NS–disk remnant, ⌫e and ⌫̄e decouple instantaneously at
surfaces approximated as finite-size disks of radii R⌫̄e =
0.75R⌫e and heights h⌫e/R⌫e = h⌫̄e/R⌫̄e = 0.25. They
are emitted half-isotropically from their respective sur-
faces with a flux ratio ↵ ⌘ �0

⌫̄e
/�0

⌫e
= 2.4 and propagate

freely afterwards. For the BH–torus, we model the ⌫-
emitting tori by setting an inner edge of the surface at
R0 = 0.15R⌫e [11], representing the innermost stable cir-
cular orbit. Since in the merger remnants, the nonelec-
tron neutrinos share the same properties, they do not
enter the following analysis and will be omitted.
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FIG. 1: Geometry of ⌫e (in red) and ⌫̄e (in blue) emitting
surfaces with radii R⌫e and R⌫̄e , heights h⌫e and h⌫̄e . R0

is the innermost stable circular orbit for a BH-disk system
(R0 = 0 for a NS-disk remnant). Inset: Example of crossings
of the ELN distribution (�⌫e ��⌫̄e) as a function of the polar
and azimuthal angles cos ✓ and � above the NS–disk. The
exact shapes are calculated at (x, z) = (0.6R⌫e , 0.35R⌫e) with
R⌫̄e = 0.75 R⌫e and h⌫e/R⌫e = h⌫̄e/R⌫̄e = 0.25. The region
shaded in red (blue) corresponds to �⌫e < �⌫̄e (�⌫e > �⌫̄e).

III. DISPERSION RELATION IN FLAVOR
SPACE

The equation of motion (EoM) for each momentum
mode governing the evolution of free streaming neu-
trinos is given by: (@t + v · @x)% = �i[H, %] where
v = (sin ✓ cos �, sin ✓ sin �, cos ✓) is the velocity of an ul-
trarelativistic neutrino, whose 4-vector is v

µ = (1,v).
The Wigner-transformed density matrix % in the flavor
basis encodes the flavor occupation numbers in the di-
agonal terms and flavor correlations in the o↵-diagonal
terms. The Hamiltonian, H, consists of the contributions
from the vacuum mixing [45], coherent-forward scattering
between neutrinos and electrons, and that among neu-
trino themselves.

Dismissing the vacuum term and ignoring the energy
dependence since we are interested in fast conversions,
we express the neutrino density matrix in terms of the
“flavor isospin” ⇠ and the occupation numbers f⌫� for
the neutrino flavor ⌫� : % = [(f⌫e + f⌫x) + (f⌫e � f⌫x)⇠]/2
(%̄ = �[(f⌫e + f⌫̄x) + (f⌫̄e � f⌫̄x)⇠⇤]/2) for neutrinos (an-
tineutrinos) 1 under the two-flavor mixing approxima-
tion. The Hamiltonian for ⇠(v) can be written as

H = v
µ
�µ

�3

2
+

Z
d⌦0

v
µ
v
0
µ⇠(v0)g(v0) , (1)

1 Quantities such as f⌫� , n⌫� and �⌫� are defined in the absence
of flavor conversions in this work.
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FIG. 1. The neutrino number densities n⌫e and n⌫̄e (left panels) and their ratio ↵ = n⌫̄e/n⌫e (right panels) in the tpb = 200
ms snapshot of the 2D supernova model. The lengths and orientations of the arrows in the left panels indicate the magnitudes
and directions of the average neutrino flux densities j⌫e and j⌫̄e in the corresponding spatial zones. The white crosses in the
right panels mark the zones where the ELN crossing occurs. There is almost no di↵erence between angle averaged properties
of the neutrinos solved in the low and high resolutions (with N✓⌫ = 6 and 36, respectively) except for the spatial extent over
which the ELN crossing occurs.

Out of the three snapshots of the 2D model we find
regions with ELN crossings within and above the decou-
pling region in the one at tpb = 200 ms. At this time, the
deformed shock has reached over 500 km and is poised to
explode the star with the help of a bipolar growth of the
hydrodynamic instabilities. Depending on their flavors
and energies, neutrinos decouple from matter at radius
⇠ 50�70 km which can be viewed as the “surface” or neu-
trino sphere of the PNS. In the first two panels of Fig. 1

we show the number densities n⌫ =
R d3p

(2⇡)3 f⌫(p) and av-

erage flux densities j⌫ =
R d3p

(2⇡)3 f⌫(p)v in this snapshot
for ⌫ = ⌫e and ⌫̄e, respectively. Both n⌫ and j⌫ are mostly
spherically symmetric in this snapshot with j⌫ generally
pointing in the radial direction with some cases of non-
radial fluxes. Naively, one may think that ELN crossings
may occur below the neutrino sphere where j⌫e and j⌫̄e

can point in very di↵erent directions. This is not the
case, however, because f⌫(p) is highly isotropic in this
region, and we find no ELN crossing here.

In our study, ELN crossings usually begin to appear
in the region where the neutrinos begin to decouple from
matter as shown in the right panels of Fig. 1. Further-
more, we find that, at the radii where ELN crossings do
occur, they usually appear in the angular zones with the
⌫̄e-to-⌫e ratio ↵ = n⌫̄e/n⌫e close to 1. The correlation
between ↵ and ELN crossings is not really a surprise.
In the neutrino decoupling region, f⌫(p) becomes more
and more peaked in the forward direction. Because the
PNS is rich in neutrons, ⌫̄e’s decouple from matter at
smaller radii than ⌫e’s do and thus obtain a more for-
wardly peaked distribution. However, this di↵erence in
f⌫e(p) and f⌫̄e(p) is usually not large enough to result in

an ELN crossing unless ⌫̄e has a flux density very close to
that of ⌫e. This is likely the reason why no ELN crossing
was found in a previous study of 1D supernova models
[38]. In the 2D model presented in Fig. 1, however, ↵ can
vary across angular zones at the same radius which leads
to ELN crossings in some regions.

To check the sensitivity of our results on the angu-
lar resolution of the neutrino distributions, we also solve
the neutrino transport for the tpb = 200 ms snapshot of
the 2D model with N✓⌫ = 36. We find that, although
the angle averaged properties of the neutrinos such as
n⌫ , j⌫ and ↵ are almost identical for the two calcula-
tions, the region with ELN crossings is much wider in
the high-resolution calculation than in the one with a
lower resolution (right panels of Fig. 1). To find out
the reason why some spatial zones show ELN crossings
in the high-resolution calculation only, we compare the
ELN distributions Gv of these zones in the two calcula-
tions. Because f(p) are approximately axially symmetric
about the radial direction in our models, we integrated

them over �⌫ and calculated f⌫(✓⌫) =
RR E2

⌫dE⌫d�⌫

(2⇡)3 f⌫(p)

and G(✓⌫) =
R 2⇡
0 d�⌫Gv. We plot f⌫e(✓⌫), f⌫̄e(✓⌫) and

G(✓⌫) for the spatial zone centered at r = 65.6 km and
cos ⇥ = 0.96 in the first two panels of Fig. 2. From this
figure one sees that the coarse angular resolution is su�-
cient to capture the overall shape of f⌫(✓⌫), and it is more
accurate in the backward directions than in the forward
directions. However, because the ELN distribution G(✓⌫)
is sensitive to the small di↵erence between f⌫e(✓⌫) and
f⌫̄e(✓⌫), and because it is likely to cross 0 near the radial
direction, a high angular resolution in the forward direc-
tions is needed to accurately describe the crossing in the

Abbar et al. 2019 Wu and Tamborra 2017
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FIG. 4. Estimates of the angular width of ELN crossings from
the discrete Monte Carlo data (top panel, Equation 20) and
from the maximum entropy test (bottom panel, Equation 19).
The ME test correctly predicts wide crossings out to r .
200 km, but falsely predicts radial structures with alternating
wide and no crossings outside this region.

at which a crossing occurs

✓ = e✓ + cos�1

 
⌘p

↵2 + �2

!
(17)

A crossing exists if ✓ is real. Therefore, the condition for
instability is

⌘2

↵2 + �2
 1 . (18)

Nonlinear flavor transformation simulations are still
needed to precisely predict the implications for the even-
tual flavor transformation, but previous work has indi-
cated that wide crossings are favorable for more signifi-
cant flavor transformation (e.g., [28, 33, 35]). In addition
to predicting the presence of a crossing, we can follow the
analysis behind the maximum entropy test further to es-
timate the properties of the crossing. The inverse cosine
in Equation 17 yields two results, and we can use the
di↵erence between them to estimate the angular width
of the crossing as

�✓ = 2 cos�1

 
⌘p

↵2 + �2

!
(19)

The bottom panel of Figure 4 shows the angular width
of the crossing as determined from Equation 19 (bottom
panel), along with an estimate of the same quantity ex-
tracted directly from the Monte Carlo results. We also es-
timate the angular width of the crossing from the Monte
Carlo data using

�✓MC ⇡ 2 cos�1

✓
1� �⌦

2⇡

◆
(20)

where �⌦ is the solid angle occupied by the inverted
portion of the ELN. The results are displayed in the top
panel of Figure 4. In both cases, there is a broad region
out to r ⇡ 200 km that exhibits wide crossings (green

FIG. 5. Depth of the ELN crossing as an estimate of the
density-normalized growth rate of the FFI. The positive and
negative regions of the ELN distribution are directly inte-
grated from the Monte Carlo data in the top panel (Equa-
tion 21), and the corresponding estimate from the ME test is
shown in the bottom panel (Equation 24). The ME test qual-
itatively predicts the crossing depth in the disk, but predicts
an artificially larg crossing depth in the polar regions.

and yellow). However, there are significant di↵erences in
the structure. The ME estimation of the width in the
polar region is significantly larger than the MC estimate.
This is unsurprising given that analytic moment closures
are known to perform poorly in polar regions. Outside of
r ⇡ 200 km, the ME test seems to indicate significantly
wider crossings than those present in the MC data along
radial structures. This structure reflects the structure
apparent in the di↵erences between flux factors between
neutrinos and antineutrinos shown in the center panel of
Figure 1, falsely correlating large electron neutrino flux
factors with wide crossings.
The growth rate of the FFI is sensitive to the depth

of the crossing. Following [16], the growth rate =(!) can
be estimated to scale with the “crossed” and “uncrossed”
ELN densities I+ and I�, defined as

=(!)p
2GF (n⌫e + n⌫̄e)

⇡
p
I+I�

n⌫e + n⌫̄e

. (21)

We calculate the “crossed” and “un-crossed” ELN densi-
ties from the discrete Monte Carlo data as

I+ =

Z
d⌦G⇥(G)

I� =

Z
d⌦G⇥(�G) ,

(22)

where ⇥ is the Heaviside theta function. This is directly
evaluated from the Monte Carlo data and displayed in
the top panel of Figure 5. The deepest crossings are
present in the dense part of the accretion disk, but cross-
ings are present almost everywhere in the domain. As
already described in several previous works, even the re-
gions with a small crossing depth have growth rates that
are much faster than the relevant advection or collisional
timescales. While it is in general possible to integrate
I+ and I� for ME distributions, we instead approximate
Equation 21 in a way that is more straightforward to

Richers 2022
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I. INTRODUCTION

II. BASIC EQUATIONS

p
µ @

(�)

f

@xµ
+

dp
i

d⌧

@

(�)

f

@pi
= �p

µ
uµ

(�)

S col + ip
µ
nµ[

(�)

H ,

(�)

f ], (1)

In the expression, f and f̄ denote the density matrix
of neutrinos and anti-neutrinos, respectively; xµ and p

µ

are spaticetime coordinates and the four-momentum of
neutrinos (and anti-neutrinos); uµ and n

µ represent the
four-velocity of fluid and the unit vector normal to the
spatial hypersurface of constant time, respectively; Scol

and S̄col are the collision terms measured at the fluid rest
frame; H and H̄ denote the Hamiltonian operators which
can be decomposed as

(�)

H =
(�)

H vac +
(�)

Hmat +
(�)

H ⌫⌫ , (2)

where

H̄vac = H
⇤
vac,

H̄mat = �H
⇤
mat,

H̄⌫⌫ = �H
⇤
⌫⌫ .

(3)

Hvac denotes the vacuum Hamiltonian with the ex-
pression in the neutrino-flavor eigenstate, which can be
written as

Hvac =
1

2⌫
U

2

4
m

2
1 0 0
0 m

2
2 0

0 0 m
2
3

3

5U
†
, (4)

where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D

2

4
Ve 0 0
0 Vµ 0
0 0 V⌧

3

5 , (5)

⇤
hirokin@astro.princeton.edu

where D = (�p
µ
uµ)/⌫ denotes the Doppler factor be-

tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as

V` ⇠
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
important for the baryon density above ⇠ 108g/cm3. Fi-
nally, H⌫⌫ represents the self-interaction potential, which
can be written as

H⌫⌫ =
p
2GF

Z
d
3
q
0

(2⇡)3
(1�

3X

i=1

`
0
(i)`(i))(f(q

0)� f̄
⇤(q0)),

(7)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(8)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (9)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
F
⌫⌫ =

p
2GF

Z
d
3
q
0F

(2⇡)3
(1�

3X

i=1

`
0F
(i)`

F
(i))(f

F
(q

0F
)�f̄

F⇤
(q

0F
)), (10)

where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[2] (see Eqs.14-20 in the paper).
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where f
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denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
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are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[2] (see Eqs.14-20 in the paper).
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[1, 2]); The leading order of V` can be written as
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where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
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q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,
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where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.
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In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (10)
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Let us estimate the size of numerical simulations to
solve QKE in the spatial range of R < r < R+�R. The
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grid width (�r) and the total number of grid points (Nr)
in radial direction can be estimated as1
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In the estimation, we resolve an oscillation wavelength
(`osc) by qr grid points.
The time step (�t) can be estimated as
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where CFL denotes a Courant–Friedrichs–Lewy factor.
The simulation time (�T) can be estimated as

�T = qt
�R

c
⇠ 10�3 s

⇣qt
3

⌘✓
�R

100km

◆
. (9)

In Eq. 10, a new variable, qt(� 1), is introduced to take
into account the flight direction of neutrinos in the esti-
mation of �T. In the case without the correction, i.e.,
qt = 1, Nt, �T corresponds to the light-crossing time of
�R for the neutrinos propagating along the radial direc-
tion. For other neutrinos propagating in di↵erent (but
outgoing) directions, their radial velocity is smaller than
the speed of light, indicating that most of the neutri-
nos emitted from the inner boundary point have not yet

1 Just for simplicity, the uniform mesh is assumed.
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Challenge: Huge disparity in scales between neutrino oscillations and CCSN/BNSM

Scale of 
fast collective-mode

Vlasenko et al. 2014, Volpe 2015,
Blaschke et al. 2016, Richers et al. 2019 

CCSN/BNSM scale > 100 ms > 1000 km   
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Phenomenological approach: Philosophy

Radiation-hydrodynamic simulations 
with classical neutrino transport

+
Mixing-scheme

with a parametric manner

Li and Siegel 2021, Just et al. 2022, Fernandez et al. 2022, Jacob et al. 2023

5

We include the e↵ects of the FFI by modifying the
incident neutrino fluxes and neutrino temperatures for
absorption. In order to restrict flavor transformation
to regions in the post-merger environment where we ex-
pect instability (see, e.g., [42, 44]), we control where fla-
vor transformation occurs by interpolating between oscil-
lated and un-oscillated luminosities. At any point in the
computational domain where neutrino absorption takes
place, the luminosity used in equation (3) becomes

L
⇤
⌫i

! L
e↵
⌫i

= (1 � ⌘osc)L
⇤
⌫i

+ ⌘oscL
osc
⌫i

, (8)

where L
⇤
⌫i

is the net un-oscillated luminosity, corrected
for absorption, and the superscript “osc” indicates os-
cillated luminosities. The activation parameter ⌘osc re-
stricts flavor transformation to regions where at least
one electron-type species is out of thermal equilibrium.
Specifically, for disk luminosities we choose

⌘osc = exp(�⌧⌫̄e), (9)

where the local optical depth (equation 5) to electron an-
tineutrinos is usually smaller than that to electron neu-
trinos, given the lower proton fraction.

When a HMNS is present, the luminosities from the
disk and the star are oscillated separately, since in our
formulation they originate from separate locations. The
oscillation parameter for the HMNS luminosities uses the
same radially-integrated optical depth used to attenuate
it (equation 7), i.e. ⌘

ns
osc = exp(�⌧

ns
⌫̄e

). This working def-
inition results in a simple linear superposition in regions
transparent to both disk and HMNS neutrinos (polar re-
gions), while ignoring flavor transformation for HMNS
neutrinos in regions where they are heavily attenuated
anyway (equator to mid-latitudes). In §III, we show that
disk luminosities are much larger than HMNS luminosi-
ties and hence more impactful.

We express the flavor-transformed luminosities them-
selves as a linear combination of the un-transformed lu-
minosities:

L
osc
⌫e

= (1 � aosc)L
⇤
⌫e

+ aoscL⌫x (10)

L
osc
⌫̄e

= (1 � bosc)L
⇤
⌫̄e

+ boscL⌫̄x . (11)

We separate heavy lepton neutrinos from heavy lep-
ton antineutrinos by evenly splitting the total heavy
lepton luminosity LX produced by the leakage scheme:
L⌫x = L⌫̄x = (1/2)LX. This is justified in that the mech-
anisms that produce heavy lepton neutrinos and antineu-
trinos are symmetric. The electron neutrino and antineu-
trino temperatures for absorption in equations (2)-(3) are
modified in the same way as the luminosities

kT
e↵
⌫e

= (1 � ⌘oscaosc) kT⌫e + ⌘oscaosc kT⌫x (12)

kT
e↵
⌫̄e

= (1 � ⌘oscbosc) kT⌫̄e + ⌘oscbosc kT⌫̄x , (13)

where T⌫x = T⌫̄x = TX. Reabsorption of heavy lepton
neutrinos is neglected, since their absorption opacities
are much smaller than those of electron neutrinos and

antineutrinos. Equations (10)-(13) are applied separately
to disk and HMNS luminosities.

The coe�cients aosc and bosc in equations (10)-(13)
are scalar quantities that allow us to manually tune how
much flavor change occurs. We test a variety of flavor
transformation assumptions:

1. Baseline: aosc = bosc = 0, which ensures no fla-
vor transformation and consistency with standard
neutrino treatment.

2. Complete: aosc = bosc = 1, such that all neutri-
nos fully change flavor. This is quite extreme and
unrealistic.

3. Flavor Equilibration: aosc = bosc = 2/3 results in
all neutrinos and antineutrinos separately having
equal abundances in all three flavors. This is still
likely extreme.

4. Intermediate: aosc = bosc = 1/2 is a less extreme
version of the assumption of full Flavor Equilibra-
tion.

5. Asymmetric (AS): The fast flavor instability is
driven by the neutrino self-interaction Hamiltonian
alone, the symmetries of which imply that the net
lepton number cannot change. This requires that
aosc(N⌫e �N⌫x) = bosc(N⌫̄e �N⌫̄x), with N⌫i the lo-
cal incident number luminosity (Appendix A). We
choose either aosc = 2/3 or bosc = 2/3 and deem
the other value asymmetric as determined locally
by this relationship. Given that electron neutrinos
are generally sub-dominant by number, and there-
fore more likely to undergo flavor transformation,
the case

aosc =
2

3
bosc =

2

3

✓
N⌫e � N⌫x

N⌫̄e � N⌫̄x

◆
(14)

is expected to be the most realistic assumption. A
related scheme was proposed in [44]. In practice,
we compute the asymmetric coe�cient in equa-
tion (14) by using the global number luminosity
attenuated with the appropriate optical depth (i.e.,
as in equation 2 for disk neutrinos), as geometric
dilution cancels out. Also, the asymmetric coe�-
cient is constrained to the range [0, 1].

Note that Equations (10)-(11) allow both heavy lep-
ton neutrino flavors to transform to the electron-type
flavor, instead of restricting the flavor transformation to
be between electron-type and only one heavy lepton fla-
vor. Our scheme conserves energy and neutrino number,
but does not reflect all of the symmetries of the Hamil-
tonian driving flavor transformation. Because of this,
in situations where there are equal numbers of all three
flavors (e.g., LX = 2Lx = 2Lx̄ = 4L⌫e = 4L⌫̄e when
all flavors have the same average energy), one would ex-
pect Complete flavor transformation (aosc = bosc = 1) to

Fernandez et al. 2022
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As mentioned before, it is natural to assume that ui = 0 (w = 1/α ≈ 1) for the dis-
tant zone far from the radiation source. Then, both the asymptotic power spectrum
densities, E(ν) and J(ν), agree with each other, because the frequency ν agrees with
that in the laboratory frame.

The evolution equations for E(ν) and F(ν)i are written in the conservative forms
as

∂t(
√
γE(ν)) + ∂j [

√
γ(αF j

(ν) − βjE(ν))] +
∂

∂ν

(

να
√
γnαM

αβγ
(ν) ∇γuβ

)

= α
√
γ[P ij

(ν)Kij − F j
(ν)∂j lnα− S α

(ν)nα], (3.37)

∂t(
√
γF(ν)i) + ∂j [

√
γ(αP j

(ν)i − βjF(ν)i)]−
∂

∂ν

(

να
√
γγiαM

αβγ
(ν) ∇γuβ

)

=
√
γ
[

− E(ν)∂iα+ F(ν)k∂iβ
k +

α

2
P jk
(ν) ∂iγjk + αS α

(ν)γiα
]

, (3.38)

where γ is the determinant of γij and Kij the extrinsic curvature.
The frequency-integrated equations are

∂t(
√
γE) + ∂j [

√
γ(αF j − βjE)]

= α
√
γ[P ijKij − F j∂j lnα− Sαnα], (3.39)

∂t(
√
γFi) + ∂j[

√
γ(αP j

i − βjFi)]

=
√
γ
[

− E∂iα+ Fk∂iβ
k +

α

2
P jk∂iγjk + αSαγiα

]

, (3.40)

where

E :=

∫ ∞

0
dνE(ν), Fj :=

∫ ∞

0
dνF(ν)j , P ij :=

∫ ∞

0
dνP ij

(ν) . (3.41)

Equations (3.39) and (3.40) have fully conservative forms, because E and Fi are the
conservative quantities in the absence of the source terms and gravitational fields.
Thus in the numerical simulation, it will be better to adopt basic equations based
on Eqs. (3.37) and (3.38).

§4. Source terms

The source terms for the second-rank radiation field equations, S α
(ν), have to be

written in terms of the radiation moments (J(ν),H
α

(ν), L
αβ
(ν) ). S

α
(ν) is formally written

as

S α
(ν) = ν3

∫

B(ν)(Ω, xµ)(uα + 'α)dΩ, (4.1)

where B(ν) is the so-called collision integral. In the following, we assume that S(ν)

and B(ν) are written as a function of the phase-space coordinate defined in the local
rest frame of the fluid. The real coordinate, xµ, is arbitrarily chosen.

We derive the source terms focusing on the neutrino transfer in a high-density
and high-temperature medium. We show that under a reasonable and often-used
assumption (anisotropy of the collision integral is small), the source terms are totally

written in terms of J(ν), H
α

(ν), and L αβ
(ν) .

4 Nagakura et al.

Fig. 2.— Left: Discretized momentum space of neutrinos in the laboratory frame. Spherical coordinates are employed. The radial
direction corresponds to neutrino energy and the azimuthal dimension is omitted. The grid in each dimension may not be uniform. Right:
The Lorentz-transformed mesh in the fluid-rest frame. The blue lines correspond to the radial lines whereas the black lines are transformed
from the concentric circles in the left panel. The brown dots show an isoenergy circle in the fluid-rest frame for comparison. Matter is
assumed to move upward in this figure.

ings.
After giving the SR Boltzmann equations in the next

section, we present our idea to overcome these difficul-
ties. We then demonstrate our successful handling of the
isoenergetic scatterings in the realistic supernova simu-
lations (see Section 7).

4. SR BOLTZMANN EQUATIONS FOR NEUTRINOS

We start with the covariant form of Boltzmann equa-
tion:

pµ ∂f

∂xµ
+

dpi

dτ

∂f

∂pi
=

(δf

δτ

)

col
, (1)

which is valid even in curved space-time. In the above
expression, f(= f(xµ, pi)) denotes the neutrino distri-
bution function in phase space; xµ and pµ are space-
time coordinates and four-momentum of neutrino, re-
spectively; since the latter satisfies the on-shell condition:
pµpµ = −m2

ν , in which mν is a neutrino mass, only three
of four components are independent and this is why only
spatial components appear in the second term on the
left hand side; τ stands for the affine parameter of neu-
trino trajectory. The left hand side of Eq. (1) expresses a
geodesic motion in the phase space, while the right hand
side denotes symbolically the so-called collision terms,
i.e., the terms that give the rate of changes in f due to
neutrino-matter interactions.

On the spherical coordinates in flat space-time, which
are the coordinates we employ for the laboratory frame in
our Eulerian approach, Eq. (1) is cast into the following

conservation form:

∂f

∂t
+

µν

r2

∂

∂r
(r2f) +

√

1− µ2
ν cos φν

rsin θ

∂

∂θ
(sin θf)

+

√

1− µ2
ν sin φν

rsin θ

∂f

∂φ
+

1

r

∂

∂µν
[(1 − µ2

ν)f ]

−
√

1− µ2
ν

r

cos θ

sin θ

∂

∂φν
(sin φνf) =

(δf

δt

)lb

col
, (2)

where r, θ, φ denote the spatial variables; as three in-
dependent components of neutrino four-momentum, we
do not use its spacial components but adopt energy and
two angles, θν and φν (see Figure 3); µν is defined as
µν ≡ cos θν . In Eq. (2) and the rest of this paper, we as-
sume that neutrinos are massless, which is well justified
as long as neutrino oscillations are ignored.

The collision term in Eq. (2), which is expressed with
the laboratory time t, is related with the original collision
term in equation (1) as

(δf

δτ

)

col
= εlb

(δf

δt

)lb

col
, (3)

where εlb(≡ pt) denotes the neutrino energy measured in
the laboratory frame. Similarly, the collision term in the
fluid-rest frame can be expressed with the proper time of
each fluid element (t̃) as

(δf

δτ

)

col
= εfr

(δf

δt̃

)fr

col
, (4)

where εfr(≡ pt̃ ≡ −uµpµ) denotes the neutrino energy
in the fluid-rest frame. Here uµ is the four-velocity of
matter.

Boltzmann transport

or

Approximate transport (e.g., moment method)

Assessing instabilities of flavor 
conversions

Linear stability analysis
or

approximate ones
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Phenomenological approach: Demonstrations

Jacob et al. 2023

Fernandez et al. 2022
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Figure 2. dMej as a function of freeze-out electron fraction, Ye,1.
We focus on the ejecta that is located at ≤ 10, 000 km at the
onset of gravitational collapse. We show results for masy = 10%
(top) and 30% (bottom). In each figure, we display the results
with (p, p̄) = (1, 1) (no FFC), (2/3, 2/3), and (1/3, 1/3) (flavor
equilibrium), (2/3, 1/3) and (1/3, 2/3) from top to bottom.

lighter than Co are chiefly produced, is less influenced by ν
absorption and thus by FFCs.

To understand the mechanism of how FFC gives impact
on FFC, we show the trajectory and the time evolution of Ye

for neutron-rich ejecta by focusing on three individual par-
ticles having the lowest Ye,1. In the following discussions, we
refer to these particles as P1, P2, and P3 in order of increas-
ing Ye,1 (0.390, 0.400, and 0.409 for P1, P2, and P3 in the
case without FFC). Figure 4 depicts the trajectories of these
particles. We note that the trajectories are independent of p
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Figure 3. [X/Fe] of all ejecta for cases with masy = 10% and with
(p, p̄) = (1, 1) (no FFC), (2/3, 2/3), and (1/3, 1/3) (flavor equi-
librium), (2/3, 1/3) and (1/3, 2/3) in panels from top to bottom.
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Figure 4. Trajectories of three tracer particles with the lowest
Ye,1. All particles eject through the ν̄e-hemisphere, where the
FFC appears.

and p̄ for each particle since the fluid background is identical
among models with a different set of p and p̄. As shown in
the figure, all particles reach near the ν sphere, suggesting
that they experience strong deleptonization. We also find
that they pass through the region around the southern pole,
indicating that they are influenced by FFC (see also Fig. 1).

The rolls of FFCs on ejecta compositions can be inter-

MNRAS 000, 1–7 (2022)

Fujimoto and H.N 2023

See also Li and Siegel 2021, Just et al. 2022
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Phenomenological approach: Uncertainties

Degree of flavor mixing can not be determined. 

No reliable approximate neutrino transport have been established.

Systematic errors are involved due to collision term (neutrino-matter interactions).

It is a parameter in phenomenological models

Requirements of quantum closure relations for angular moments

Non-linear evolution of flavor conversions strongly hinge on collision term
See Chinami Kato’s talk

These issues can be addressed only by solving quantum kinetic neutrino transport 



Power is principally lost from the isotropic moments.
Although we do not analyze the impact of collisions in
this paper, their influence—and especially the relative
importance of emission and absorption and scattering
processes—will depend on where power resides and
how it is transferred collisionlessly.
Figure 2 displays the “angular power spectra” in both

mass hierarchies, again comparing α ¼ 0.85 and α ¼ 0.90.
As anticipated, cascade occurs in all cases and is greatly
magnified by FFC. Enhancement is seen both in the rate
at which power travels out to higher l and in the ampli-
tude at which it does so. As the cascade front moves
outward, roughly flat regions form in its wake, expanding
and becoming flatter with time. (For α ¼ 0.90, the rapid
oscillations as a function of l are flattened by time
averaging over many fast-oscillation periods.) The
orders-of-magnitude difference between typical Πl values
in the α ¼ 0.90 and α ¼ 0.85 calculations explains why
kinematic decoherence is visible in Fig. 1 for the former but
not the latter.

These regions are analogous to the inertial ranges
encountered in fluid turbulence, which span intermediate
scales between those at which driving and dissipation
occur. Here the driving is oscillations at large angular
scales. Oscillations induce dephasing and thereby momen-
tum-space transfer. In this collisionless system, there is no
analog of a dissipation scale, and so power continues to
cascade perpetually out to higher l. The asymptotic state,
one imagines, is infinitesimal power equally distributed
over all moments out to infinity. This is the closest the
system can get to fully relaxed while still satisfying
unitarity, Eq. (26).
Over time, as power cascades to higher l, small-scale

angular features becomes increasingly apparent in the
flavor composition Pv;z as a function of propagation angle
v. Figure 3 shows this development by comparing the
v dependence of fast oscillations at different times.
Interaction of FFC with momentum-space transfer and
slow collective evolution causes the Pv;z profile and its
periodicity to be increasingly disrupted [17,23]. The effect

FIG. 2. Momentum-space angular power spectra of neutrino flavor for the same set of calculations presented in Fig. 1. The powerΠl in
angular moment l is defined in Eq. (25). From darkest to lightest, the curves show log10 Πl at t ¼ 0.2, 0.4, 0.6, 0.8, and 1.0, in units of
ω−1. FFC enhances cascade and hastens relaxation. All cases show interesting features at angular scales intermediate between the
expanding front of nonzero power and the low-l scales directly involved in fast and bipolar collective oscillations.

JOHNS, NAGAKURA, FULLER, and BURROWS PHYS. REV. D 102, 103017 (2020)
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should not be overstated, however, as the outline of the
ω → 0 collective behavior persists to some degree, at least
in these calculations. The essence of the fast pendulum
remains even as the pendulum is affected and modulated by
finite-ω effects.
We have seen, in this subsection, how the dephasing

mechanism of Sec. III A brings about kinematic deco-
herence; how the mechanism is intensified by FFC; how the
power lost at large angular scales cascades down to smaller
ones, relaxing the system in a unitary manner; and how
cascade manifests as small-scale angular structures in the
flavor evolution. Next we look more closely at the nature of
momentum-space transfer far from the monopole.

C. Transfer at small angular scales

Further insight into the momentum-space dynamics is
gained by observing the evolution of an initially isolated
seed in the angular power spectrum. An experiment of this
kind allows us to focus in on transfer without the compli-
cating features specific to low-l evolution, namely fast and
bipolar collective oscillations and the existence of a natural
cutoff at l ¼ 0. (In a real physical setting these features are
of course essential, and Ref. [17] was devoted to studying
them.) The section following this one then goes to the other
extreme, examining the effects on transfer of an artificial
cutoff at l ¼ lmax.
In Fig. 4, power has been placed by hand at t ¼ 0 in the

l ¼ 50 moments of Pv and P̄v. Color-coded snapshots of
the angular power spectrum are shown. These calculations
were done using the NH and α ¼ 0.85. Without the l ¼ 50
seeds, they would be the same as the calculation shown in
the bottom-left panel of Fig. 2.
The top panel of Fig. 4 shows the evolution that results

when the seeds are chosen to be parallel to the flavor axis z
at t ¼ 0. Gently sloping plateaus form on the sides of the
l ¼ 50 spike in the angular power spectrum and expand
outward over time. Because of the relatively low ampli-
tudes of these plateaus, little power is lost from l ¼ 50.
The bottom panel shows the evolution when the seeds

are initially perpendicular to the flavor axis. In this case, a

single plateau forms, which encompasses l ¼ 50 and is flat
when averaged over suitable intervals of time. The entire
spike vanishes into this expanding region, which conse-
quently has a much higher amplitude than in the top panel,

FIG. 3. Flavor composition Pv;z plotted as a function of propagation angle v ¼ cos θ, for the α ¼ 0.90, NH calculation of the previous
figures. The curves are color coded by time, beginning at the top of a fast-oscillation dip (blue), lasting a duration of ∼10−3, and ending
at the bottom of the dip at time tf (red). As usual, times are given in units of ω−1. Finite-ω effects—the disruption of the fast pendulum
and the cascade of power to smaller angular scales—become increasingly apparent at later times.

FIG. 4. Angular power spectra in calculations with power
seeded at l ¼ 50. In the plot labels, “Parallel” indicates that
P50 and P̄50 are set parallel to the flavor axis z at t ¼ 0, and
“Perpendicular” indicates that they are perpendicular to the flavor
axis and parallel to each other. From darkest to lightest, the curves
are at times 1.1 × 10−5, 2.2 × 10−3, 4.4 × 10−3, 6.6 × 10−3, and
8.8 × 10−3 in units of ω−1.
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Cascade of flavor field

Power Spectrum 
(angular dependence)

amplitude and the growth rate in flavor conversion are
suppressed by scatterings regardless of neutrino and antineu-
trinos. This may be attributed to the fact that the ELN angular
distribution evolves to an isotropic distribution by scatterings
(see Figure 18), i.e., the amplitude of ELN crossing decreases
with time. As discussed in Richers et al. (2021), the reduction of
the amplitude of ELN crossing may account for the suppression.
We reckon that there is another reason. As shown in Figure 15,
the fast flavor conversion occurs vigorously around the angular
point of ELN crossing. On the other hand, the crossing point is
migrated by scatterings (see Figure 18), which works to disperse
the growth of flavor conversions into wide angles. This would
result in suppressing flavor conversion, unless the flavor
conversion grows substantially during the stagnation of the
crossing. This suggests an interesting possibility that the effect of
scatterings hinges on the cross section of scatterings, which is in
line with results in Martin et al. (2021) and discussions in
Shalgar & Tamborra (2021a).

To strengthen the above argument, we compare the growth
rate of fast flavor conversion obtained from the simulation to an
empirical estimation proposed in our previous paper (Morinaga
et al. 2020). We estimate the growth rate from our simulation as
follows. We take the peak amplitude of the off-diagonal
components of ρa and Sā on each propagation direction (see,
e.g., Figure 19). We compute the slope (growth rate) by
computing the difference at adjacent peak points and divided
by the difference of time, and then we take the angular average;
the result is shown with the black line in Figure 20. It should be
noted that the growth rate is normalized by the one without
scattering. Our result suggests that scatterings under the choice
of the parameters reduce the growth of flavor conversion by
∼70% at t∼ 3× 10−7 s. The orange line in the same figure, on
the other hand, portrays the growth rate obtained by an
empirical formula,

¨ ¨S R S R_ % %
S

O
S

O
% � % �

G d dcos cos , 40a a
0 0a a

⎜ ⎟⎜ ⎟⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ( )

with S S S% w �a a ee a ee, ,¯ (see Morinaga et al. 2020). We
estimate the growth rate at each time step by using Δρa

obtained from the simulation. Although the two lines in
Figure 20 are slightly different from each other, the qualitative
trend is essentially the same.18 This result suggests that the
growth of flavor conversion is determined mainly by the
angular distribution of νe and Oē at each instantaneous time, and
that the isotropized ELN angular distribution due to scatterings
is the major factor of the suppression (see Figure 18). It should
also be stressed that the reasonable agreement between the two
results suggests that our QKE-MC solver works well for this
problem.
Finally, we perform resolution studies. In the top panel of

Figure 21, we show the resolution dependence of Nθ. The
reference value is 64, but we check the case with 128. It should
be mentioned that the number of MC particles is also increased
twice from the reference in the case with Nθ= 128. This figure
suggests that the difference between the two results is subtle.
We also show the result without scatterings in the same figure,
and the difference to the cases with scatterings is remarkable.
Hence, the resolution of Nθ= 64 is sufficient to capture the
impact of scatterings qualitatively. In the middle panel of
Figure 21, we study the influence of statistical noise. For
convenience, we use another variable, N, which is defined as
the total number of MC particles divided by Nθ, i.e., it
represents the total number of MC particles on each angular
mesh. We find that N= 500 (reference value) is almost
identical to the case with N= 1000, indicating that the
statistical noise in our reference model does not compromise
our results. It should be mentioned that the statistical noise is
also reduced by the EMFP method. To see the impact more
quantitatively, we run two additional simulations with a= 10−4

and 10−6, and the results are displayed in the bottom panel of
Figure 21. This figure suggests that the simulation with
a= 10−5 (reference value) is capable of providing a physically
accurate result. This convergence test strengthens the reliability
and capability of our new modules. It should also be mentioned

Figure 19. The time evolution of S S�Im Ima a,ex ,ex¯ at three different
directions, R � �Ocos 0.99 (black), 0.21 (orange), and 0.99 (light blue), for a
test of fast flavor conversion with scatterings. Colors distinguish angular
directions. Solid and dashed lines represent the results with and without
scatterings, respectively.

Figure 20. The time evolution of the growth rate ratio of fast flavor conversion
with and without scatterings. The ratio of <1 indicates that the scattering
suppresses fast flavor conversion. The orange line denotes the result computed
by the time evolution of S S�Im Imex ex¯ from our QKE-MC simulation. The
ratio computed from the empirical laws by Morinaga et al. (2020) is shown
with the black line. See text for more details.

18 The deviation is mainly due to the accuracy of the empirical relation;
indeed, the exact growth rate is quantitatively different from it. See Morinaga
et al. (2020) for more details.
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abstract

I. INTRODUCTION

II. BASIC EQUATIONS
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f ], (1)

In the expression, f and f̄ denote the density matrix
of neutrinos and anti-neutrinos, respectively; xµ and p

µ

are spaticetime coordinates and the four-momentum of
neutrinos (and anti-neutrinos); uµ and n

µ represent the
four-velocity of fluid and the unit vector normal to the
spatial hypersurface of constant time, respectively; Scol

and S̄col are the collision terms measured at the fluid rest
frame; H and H̄ denote the Hamiltonian operators which
can be decomposed as

(�)

H =
(�)

H vac +
(�)

Hmat +
(�)

H ⌫⌫ , (2)

where

H̄vac = H
⇤
vac,

H̄mat = �H
⇤
mat,

H̄⌫⌫ = �H
⇤
⌫⌫ .

(3)

Hvac denotes the vacuum Hamiltonian with the ex-
pression in the neutrino-flavor eigenstate, which can be
written as

Hvac =
1

2⌫
U

2
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m
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1 0 0
0 m
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2 0

0 0 m
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, (4)

where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D

2

4
Ve 0 0
0 Vµ 0
0 0 V⌧

3

5 , (5)
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where D = (�p
µ
uµ)/⌫ denotes the Doppler factor be-

tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as

V` ⇠
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
important for the baryon density above ⇠ 108g/cm3. Fi-
nally, H⌫⌫ represents the self-interaction potential, which
can be written as

H⌫⌫ =
p
2GF

Z
d
3
q
0

(2⇡)3
(1�

3X

i=1

`
0
(i)`(i))(f(q

0)� f̄
⇤(q0)),

(7)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(8)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (9)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
F
⌫⌫ =

p
2GF

Z
d
3
q
0F

(2⇡)3
(1�

3X

i=1

`
0F
(i)`

F
(i))(f

F
(q

0F
)�f̄

F⇤
(q

0F
)), (10)

where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[2] (see Eqs.14-20 in the paper).
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We developed a new neutrino transort code, GRQKNT, for numerical studies of quantum kinetics
of neutrinos in six-dimensional phase space. This code is intended for applications in global simu-
lations of neutrino transport such as core-collapse supernova and compact binary mergers, while it
can also be used for local simulations as commonly performed for the study of non-linear regimes of
collective neutrino oscillations.

I. INTRODUCTION

In the hot and dense medium arising in core-collapse
supernova (CCSN) and binary neutron star merger
(BNSM), neutrinos play a key role in transporting en-
ergy, momentum, and lepton-number. Once neutrinos
are produced by weak interactions, they propagate across
di↵erent fluid elements. A fraction of the neutrinos ex-
perience scatterings with or reabosrption onto matter,
that would drive explosions in CCSN, and launch disk-
outflows in the remnant of BNSM. The neutrino emis-
sion and absorption can also change the electron-fraction
that has a direct influence on the chemical composition of
matter, highlighting the importance of accurate models
of neutrino radiation field.

Decades of progress on numerical simulations of CCSN
and BNSM have improved our understanding of rolls of
neutrinos on fluid dynamics and their observable conse-
quences. Most of the numerical models, however, su↵er
from large uncertainties in neutrinos quantum kinetics.
In dense neutrino environments, the neutrino-neutrino
self-interactions give rise to reflactive e↵ects, potentially
leading to large neutrino-flavor conversion (see, e.g., [1–
3]). Since the self-interaction is essentially a non-linear
process, a number of simplifying assumptions need to be
imposed to handle the problem analytically. Although
numerical simulations is a powerful approach in study-
ing the non-linear phenomenon, they are not yet at a
stage to provide reliable astrophysical consequences of
the flavor conversion. In fact, the spatial wavelength of
flavor conversion becomes several orders of magnitude
smaller than typical one of CCSN and BNSM, exhibit-
ing requirements of currently unfeasible comutational re-
sources. Notewithstanding, we need to accomodate neu-
trino quantum kinetics in theoretical models one way or
another. In fact, recent theoretical studies suggested that
fast neutrino-flavor conversion, one of the collective neu-
trino oscillation modes, ubiquitously occur in CCSN [4–
13] and BNSM [14–18] environments.

not important in CCSN [19, 20] and BNSM [21] dy-
namics

The non-linear properties of neutrino quantum kinetics
have been investigated in various approaches. One of the

⇤
hiroki.nagakura@nao.ac.jp

common strategy is neutrino bulb model[19, 20, 22–29]1

The most common strategy is to make use of either
steady-state or local approximations, making the prob-
lem numerically tractable.
stationary and homogeneous solutions [30]
line-beamed model [31–33]
homogeneous dynamical [34–39]
inhomogeneous dynamical [40–51]
numerical codes [52, 53]
a long and arduous journey.
As pointed out by [54, 55], collective neutrino oscil-

lations naturally break their own temporal stationality
in CCSN environments, suggesting that we would dis-
card potentially important features of quantum kinetics
in steady-state models.
Multi-azimuthal-angle instability [56, 57]
Self-induced decoherence [58]
GR e↵ects [26]
Matter neutrino reasonances [59–61]
Global simulations (under-resolved and short-time)

[21, 62]

II. BASIC EQUATIONS

We follow the convection in [63].

"
df

dt
(1)

Beyond the mean-field approximation [64]

p
µ @

(�)

f

@xµ
+

dp
i

d⌧

@

(�)

f

@pi
= �p

µ
uµ

(�)

S col + ip
µ
nµ[

(�)

H ,

(�)

f ], (2)

In the expression, f and f̄ denote the density matrix
of neutrinos and anti-neutrinos, respectively; xµ and p

µ

are spaticetime coordinates and the four-momentum of
neutrinos (and anti-neutrinos); uµ and n

µ represent the

1
We note that there are di↵erent levels of approximations in the

bulb model; for instances, steady-state or time-dependent, single

or multi-angle, with or without including halo e↵ects, etc. See

references for more details.

But see also Johns and H.N 2021 for consistency issues.
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FIG. 1. Time evolution of nx for (a) E1, (b) E2 HR and (c)
E2 HR a models. Black line in panel(a) describes the result
without collisions. Other colors distinguish the models with
collisions. In panels(b) and (c), the solid and dashed-lines
represent E2 and E1 models, respectively.

characterize the growth of FFCs3. In the case with-
out collisions (left-top panel), the angular distribution
of L does not evolve much with time except in the vicin-
ity of ELN-XLN crossing. As a result, the ELN-XLN
crossing does not disappear throughout the evolution. In
cases with collisions, on the other hand, the angular point
where the ELN-XLN crossing occurs changes with time,
and eventually the crossing disappears (L becomes posi-
tive in all directions). Around the time when the ELN-
XLN crossing disappears (t ∼ 4 × 10−7, 4 × 10−6 s for
E1 HR and E1 LR models, respectively), nx is saturated,
indicating that FFCs subside. Since angular distribu-
tions of neutrinos are still anisotropic at the saturation
time, they continue to be isotropized by collisions. The
isotropization does not generate new ELN-XLN cross-
ings, and therefore FFCs are no longer revived.
One of the important roles of collisions on FFC is to

broaden the angular region where FFC occurs. As shown
in left bottom panel of Figure 2, gee (ḡee) in E1 noscat
model decreases due to FFCs only around the region
where L is zero (cos θν ∼ 0.2). For cases with collisions,
on the other hand, FFCs occur in the wider angular range
(see middle- and right bottom panels of Figure 2). This
is consistent with our observation that the ELN-XLN
crossing point moves to forward angular directions due
to isotropization by collisions.
To measure the anisotropy of νe, we define δ as

δ =

∣

∣

∣

∣

∫

d cos θν cos θνgee(cos θν)
∫

d cos θνgee (cos θν)

∣

∣

∣

∣

, (8)

and its time evolution is displayed in Figure 3(a). In the
case without collisions (black line), δ has a periodic fea-
ture, which is the same trend as nx. Green and cyan lines
depict the results for E1 LR and E1 HR models, respec-
tively. In these models, δ increases due to FFCs until the
disappearance of the ELN-XLN crossing. After FFCs are
terminated, δ monotonically decreases by collisions.
As shown in Figure 1(a), we find that the vigor of

FFCs is stronger with increasing reaction rate, meanwhile
the saturation amplitude and its time become smaller
and shorter, respectively; those for E1 HR model (E1 LR
model) are nx ∼ 5.5×1032 cm−3 and t ∼ 4×10−7 s (nx ∼
5.6×1032 cm−3 and t ∼ 4×10−6 s). This exhibits that the
saturation amplitude of FFCs is determined through the
competition between the growth rate and the duration of
FFCs. This trend needs to be kept in our mind in the
following discussions. It should also be mentioned that

3 There is a caveat, however. In homogeneous models, the ap-
pearance of ELN or ELN-XLN crossings does not guarantee the
occurrence of FFC. This is due to the fact that the instability
would occur in inhomogeneous modes, while flavor conversion
may be stable in homogeneous ones. Nevertheless, ELN-XLN
angular distributions are still informative to understand qualita-
tive trends of FFCs in homogeneous models. In fact, the disap-
pearance of ELN-XLN angular crossings guarantees that FFCs
do not occur in homogeneous models.

Kato and H.N 2022
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mode is likely unimportant for the explosion mechanism
(e.g., [37]), but is still impactful for ejecta nucleosynthe-
sis (e.g., [38–40]). The matter-neutrino resonance can
occur under certain conditions when the neutrino po-
tential is comparable to the matter potential and may
impact neutrino signals and nucleosynthesis from both
supernovae [41] and neutron star mergers [42]. In addi-
tion, a small fraction of neutrinos emitted from an ongo-
ing core-collapse supernova explosion will scatter o↵ of
heavy nuclei in the collapsing stellar envelope far outside
of the shock front, forming a di↵use halo of scattered
neutrinos, some of which are moving inward. These dif-
fuse neutrinos can drive significant flavor changes in the
much larger number of outgoing neutrinos [43–45].

Although proposed more than a decade ago [46], it was
only appreciated in recent years that a new flavor insta-
bility could drive neutrino flavor transformation orders
of magnitude more quickly than the previous transforma-
tion mechanisms [47–53]. While the magnitude of the ef-
fect of this fast flavor instability (FFI) on the abundances
of each neutrino flavor is still uncertain, straightforward
arguments suggest that the FFI should be a ubiquitous
feature of both CCSNe and NSMs [45, 54]. Although the
associated small length and timescales make simulations
of the full quantum kinetic equations (QKE) presently
impossible in global multidimensional simulations, neu-
trino transport without flavor transformation is much
more tractable. Many authors have used the neutrino
distributions in these multidimensional neutrino trans-
port simulations to diagnose the presence or lack of the
FFI in CCSNe [40, 45, 55–63] and NSMs [38, 54, 64].
Even if flavor transformation does not a↵ect the dynam-
ics, it has been suggested that it can significantly modify
the elements formed in the ejecta, hampering the produc-
tion of heavy elements in NSMs [38, 64] and enhancing
the production of light-p nuclei in neutrino-driven winds
from CCSNe [40].

Motivated by the potential impact of the FFI and the
hope that a general understanding of the final state of an
unstable distribution can eventually be applied to global
simulations, several authors have begun working on di-
rect simulations of the instability. The majority of the
simulations so far assume homogeneity (“one-zone” mod-
els) and are discretized in only angle (or angular mo-
ments) and time. These simulations have demonstrated
a consistency between linear stability analysis and di-
rect evolution of the nonlinear equations [65–68] and have
shed some insight into the late-time angular turbulence
and kinematic decoherence [69–71]. Other simulations of
the FFI have included inhomogeneity [72, 73], a simpli-
fied treatment of collisional processes [74], or both [50].

The capabilities of existing simulation methods are
currently limited by various imposed symmetries, a re-
duced number of neutrino species, and/or a requirement
for a very large number of grid cells or basis elements.
To unify and expand on these models, a more general
framework for simulating kinetics is needed. Neutrino
transport methods such as moment methods [75–82], dis-

crete ordinates [83, 84], and Monte Carlo [85–88] could in
principle all be extended to treat coherent flavor e↵ects
[89, 90], but the strong dependence of the evolution of
each neutrino on integrals of nearby neutrino distribu-
tions is challenging to implement e�ciently.

In this paper, we utilize technology from the plasma
physics community and describe a particle-in-cell (PIC)
method that formally solves the mean field quantum ki-
netic equations in an e�cient, scalable manner. In Sec-
tion II we outline a particle-in-cell implementation of
the neutrino quantum kinetic equations. In Section III
we demonstrate the exponential growth, saturation, and
kinematic decoherence of a toy neutrino distribution on
a one-dimensional mesh. Finally, in Section IV we vary
the neutrino distributions to begin the parameter study
needed to build a sub-grid model of the FFI. We provide
some concluding remarks in Section V.

We have developed the new code Emu [91] to imple-
ment this PIC method for solving the QKEs. Emu is
fully open-source and is available at https://github.
com/AMReX-Astro/Emu. All parameter files and select
data from this study are publicly available [92] and fur-
ther data is available upon request.

II. EMU: PIC NEUTRINO FLAVOR KINETICS

Emu solves the mean-field quantum kinetic equations
without collisions (Section II A) by evolving the position
and quantum state of a collection of computational par-
ticles moving through a background grid (Section II B).
During each simulation timestep the particles aggregate
their quantum states to construct a distribution within
each grid cell (Section II B 1). The neutrino and back-
ground matter distribution are next interpolated to each
particle’s position in order to construct time derivatives
of the position and quantum state (Section II B 2). All
particles are then integrated forward in time using a high-
order integrator and a performance portable domain de-
composed parallelization scheme using the AMReX frame-
work (Section II C). This is repeated until the simulation
is evolved for the desired amount of time. We discuss
each of these steps in more detail below.

A. Quantum Kinetic Equations

The quantum kinetic equations that describe the trans-
port of relativistic quantum particles read [29, 30]

@fab

@t
+ c⌦ · rfab = Cab � i

h̄
[H, f ]ab . (1)

fab(x, t,p) is a NF ⇥ NF Hermitian matrix, where NF is
the number of neutrino flavors. Throughout this paper
we use the convention that a, b, c, d are flavor indices,
and are 2 {e, µ, ⌧} for quantities in the flavor basis or
2 {1, 2, 3} for quantities in the mass basis. The diagonals
of fab represent the occupation probability for neutrinos

Advection term (flat + cartesian-coordinate)

6

into

@tP̃
K
v = �ivKP̃K

v

+
X

K0

Z
dv0(1� vv

0)Ge
v0P̃K�K0

v0 ⇥ P̃K0

v

�
. (26)

This equation includes the non-linear coupling term
among all spatial modes K derived from the neutrino
self-interactions. We initially put artificial spatially-
inhomogeneous perturbations on the o↵-diagonal com-
ponents of the density matrix to trigger flavor conversion
instead of nonzero vacuum mixing. The spatial pertur-
bation is

P1(t = 0, z, vz) = ✏(z) (27)

P3(t = 0, z, vz) =
p

1� ✏(z)2, (28)

where ✏(z) is randomly arranged between 0 and 10�6.
The third component P3 corresponds to the diagonal part
of the density matrix and the decrease from unity implies
the occurrence of a flavor transformation. In performing
the flavor evolution in Eq. (26), once the initial conditions
are built on the configuration space, they are converted
into the Fourier space.

The self-interaction strength µ is a unique dimensional
quantity in the QKE on the fast limit. Hence, we can
measure the time and space with the unit of µ�1. Then,
we adopt a one-dimensional simulation box of Lz = 1000
spanned by a uniform grid Nz = 10000 with the peri-
odic boundary condition. And we set 256 angular bins
on the root of Legendre polynomials and use the Gauss-
Legendre quadrature for the angular integration. We
evolve Eq. (26) using the fourth-ordered Runge-Kutta
scheme with a fixed time step size of �t = CCFL�z,
where the Courant-Friedrichs-Lewy number CCFL = 0.4
as in Ref. [62].

B. ELN-XLN analysis

We perform the inhomogeneous modeling of local FFC
with periodic boundary. In the fast limit, flavor conver-
sion is determined only by the ELN-XLN angular distri-
butions. Here, we focus on the time evolution of FFC in
terms of ELN and XLN.

Figure 2 shows P3(t, z, vz) on the space-velocity (z �

vz) plane at five representative time snapshots t =
750, 1000, 2000, 3000, and 5000. Flavor conversions
emerge everywhere in space but mainly in vz & 0.7 for the
angular direction. Once the flavor conversion enters into
a non-linear phase, flavor waves interfere with each other
mainly due to the spatial advection and then cultivate
smaller-scale structures. After t = 2000, the entire sys-
tem establishes a quasi-steady state with temporal and
spatial variations.

To capture the overall trend of the quasi-steady state,
we adopt the spatial-averaged G

ex
v (t,x) in computing the

dispersion relation. As we have already mentioned, the

FIG. 2. P3(t, z, vz) on the space-velocity (z � vz) plane at
five time snapshots t = 750, 1000, 2000, 3000, and 5000.

stability can be determined by the ELN-XLN angular
crossing; hence, we focus on ELN-XLN distributions be-
low. Figure 3 portrays spatial-averaged flavor coherent
hSi and ELN-XLN distributions as a function of time
and neutrino angle in the top and middle panels, mean-
while we also display some relevant quantities of angular
distribution at t = 5000 in the bottom one. As shown in
the top panel, the spatial-averaged flavor coherent hSi is
clearly small even for the late phases and is . 0.1, and
then the neutrino density matrix is almost in the flavor
state. As shown in the middle panel, the ELN-XLN in
vz & 0.7 approaches to zero with time (transiting from
blue to white), meanwhile it has a subtle change in other
angular directions. In the early phase when flavor conver-
sion starts to occur, large-scale coherent oscillation ap-
pears, but it cascades to small scale with decreasing the
amplitude. This indicates that the system establishes a
quasi-steady state. Assuming that s is constant in the
quasi-steady state based on the two panels, the stability
of FFC can be evaluated through the spatially-averaged
ELN-XLN angular distributions. We can delve into the
detailed angular distributions in the quasi-steady state,
at t = 5000, in the bottom panel of Fig. 3. As shown in
the panel, the ELN angular distribution still has a cross-
ing even after the non-linear saturation. However, XLN is
no longer zero due to flavor conversion, and we find that
it compensates the angular distribution so as to make
ELN-XLN be zero in vz & 0.7. This is the reason why
further flavor conversion does not occur in the spatially
averaged domain in our simulation, which is consistent
with our claim obtained by the stability analysis. As a
result, the spatial-averaged ELN-XLN angular distribu-
tion is entirely positive or zero, and does not have any

Zaizen and H.N (arXiv:2211.0934)

Asymptotic states in FFCs

See also Bhattacharyya et al. 2021, Wu et al. 2021

1D simulation with periodic boundary condition

ELN-XLN angular 
distributions
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FIG. 11. Radial and angular distributions of neutrinos for two local inhomogeneous simulations of FFC. The color map displays
fνx/(fνe + fνx). R0 is set to be 50 km, and the computational domain is ∆R = 100 cm. The left panel shows the result of
simulation with a fixed boundary, in which the neutrino angular distribution in cos θν > 0 flight directions at the inner boundary
(R−R0 = 0) is constant in time. The right one shows the result in the case with periodic boundary condition. We display the
result at t = 10−8 s. At that time, the neutrino distributions have already settled into a quasi-steady state.

a systematic study with varying neutrino angular distri-
butions and changing the computational domain, that is
clearly out of the scope of this code paper.

VI. SUMMARY

In this paper, we describe the design and implementa-
tion of our new neutrino transport code GRQKNT with
minimum but essential tests. This corresponds to an
upgraded solver of full Boltzmann neutrino transport;
indeed, we transplanted several modules of our Boltz-
mann solver to GRQKNT (e.g., two-energy-grid tech-
nique). Below, we briefly summarize the capability.

1. GRQKNT code is capable of solving the time-
dependent QKE in the full phase space (six di-
mension). The transport operator is written in a
conservative form of general relativistic QKE (see
Sec. II). In the current version, neutrino trans-
port in three different spacetimes (flat spacetime,
Schwarzschild black hole, and Kerr black hole) are
implemented. The two-energy-grid technique is
equipped to treat fluid-velocity dependence self-
consistently (see Sec. III).

2. Major weak processes (neutrino emission, absorp-
tion, and scatterings) contributing in collision term
are implemented in GRQKNT: electron-capture by
free proton (and its inverse reaction, νe absorption),
positron-capture by free neutrons (and its inverse
reaction, ν̄e absorption), nucleon scattering, and
coherent scattering with heavy nuclei. Collision
term for the flavor off-diagonal components are also
taken into account by following [83] (see Sec. IV).

3. Vacuum, matter, and self-interaction Hamiltonian
are implemented. The tests demonstrated in Sec. V
lends confidence to our numerical treatment of
these oscillation modules.

The versatile design of GRQKNT allows us to study
many features of neutrino kinetics, and therefore it will
contribute to fill the gap between astrophysics commu-
nity and neutrino oscillation one. As the first demon-
stration, we preform time-dependent global simulations
of FFC by using GRQKNT, which is reported in another
paper [82]. This is an important step to understand as-
trophysical consequences of FFC in CCSN and BNSM,
and we will extend the work to more realistic situation
in future.
It should be mentioned, however, that there still re-

main work needed in developments of GRQKNT. Im-
proving input physics such as neutrino-matter interac-
tions is necessary to study more detailed features of
neutrino quantum kinetics. Another shortcoming in
GRQKNT code is that it is only applicable to prob-
lems with frozen matter background, and the feedback
on matter dynamics is completely neglected. This in-
dicates that the radiation-hydrodynamic features with
quantum kinetic neutrino transport can not be inves-
tigated by the current version of GRQKNT. Although
the numerical technique to link to hydrodynamic solver
has been already established as demonstrated in our full
Boltzmann neutrino transport code, the huge disparity of
length and time scales between neutrino flavor conversion
and other input physics is a major obstacle. We intend to
overcome the issue by involving sub-grid models or de-
veloping better methods and approximations in future,
although technical and algorithmic innovations are indis-

Asymptotic states of FFC depend on boundary conditions in space.
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conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘

�����

Z

Gex
v <0

dv

4⇡
G

ex
v

����� (20)

B ⌘

�����

Z

Gex
v >0

dv

4⇡
G

ex
v

����� . (21)

When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.

4

conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘

�����

Z

Gex
v <0

dv

4⇡
G

ex
v

����� (20)

B ⌘

�����

Z

Gex
v >0

dv

4⇡
G

ex
v

����� . (21)

When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.
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abstract

I. INTRODUCTION

II. BASIC EQUATIONS

p
µ @

(�)

f

@xµ
+

dp
i

d⌧

@

(�)

f

@pi
= �p

µ
uµ

(�)

S col + ip
µ
nµ[

(�)

H ,

(�)

f ], (1)

In the expression, f and f̄ denote the density matrix
of neutrinos and anti-neutrinos, respectively; xµ and p

µ

are spaticetime coordinates and the four-momentum of
neutrinos (and anti-neutrinos); uµ and n

µ represent the
four-velocity of fluid and the unit vector normal to the
spatial hypersurface of constant time, respectively; Scol

and S̄col are the collision terms measured at the fluid rest
frame; H and H̄ denote the Hamiltonian operators which
can be decomposed as

(�)

H =
(�)

H vac +
(�)

Hmat +
(�)

H ⌫⌫ , (2)

where

H̄vac = H
⇤
vac,

H̄mat = �H
⇤
mat,

H̄⌫⌫ = �H
⇤
⌫⌫ .

(3)

Hvac denotes the vacuum Hamiltonian with the ex-
pression in the neutrino-flavor eigenstate, which can be
written as

Hvac =
1

2⌫
U

2

4
m

2
1 0 0
0 m

2
2 0

0 0 m
2
3

3

5U
†
, (4)

where ⌫ = �p
µ
nµ = p

0
↵; ↵ denotes the lapse func-

tion; mi denotes the mass of neutrinos; U denotes
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.
The matter potential Hmat can be written as

Hmat = D

2

4
Ve 0 0
0 Vµ 0
0 0 V⌧

3

5 , (5)

⇤
hirokin@astro.princeton.edu

where D = (�p
µ
uµ)/⌫ denotes the Doppler factor be-

tween the laboratory frame and the fluid-rest frame (see
[1, 2]); The leading order of V` can be written as

V` ⇠
p
2GF (n`� � n`+), (6)

where GF and n` represent the Fermi Constant and the
number density of each lepton, respectively. We note,
however, that µ and ⌧ do not appear in CCSN (but see
[3, 4] for interesting possibilities of µ appearance in CCSN
core); hence the next order correction, radiative correc-
tion, should be taken into account [5, 6], which would be
important for the baryon density above ⇠ 108g/cm3. Fi-
nally, H⌫⌫ represents the self-interaction potential, which
can be written as

H⌫⌫ =
p
2GF

Z
d
3
q
0

(2⇡)3
(1�

3X

i=1

`
0
(i)`(i))(f(q

0)� f̄
⇤(q0)),

(7)
where d

3
q denotes the momentum space volume of neu-

trinos (and anti-neutrinos), which are measured at the
laboratory frame; `i(i = 1, 2, 3) denote directional cosines
for the direction of neutrino propagation and it is mea-
sured with respect to a spatial tetrad basis e(1) which is
normal to n. They can be written as

`(1) = cos ✓⌫ ,

`(2) = sin ✓⌫ cos �⌫ ,

`(3) = sin ✓⌫ sin �⌫ ,

(8)

where ✓⌫ and �⌫ denote the polar and azimuthal angles
in neutrino momentum space1.

1
In some approaches, it may be useful to define Hamiltonian op-

erators on the fluid-rest frame. They are related to those define

in laboratory frame as,

H = DH
F
. (9)

The self-interaction potential at the fluid rest frame can be writ-

ten as

H
F
⌫⌫ =

p
2GF

Z
d
3
q
0F

(2⇡)3
(1�

3X

i=1

`
0F
(i)`

F
(i))(f

F
(q

0F
)�f̄

F⇤
(q

0F
)), (10)

where f
F

denotes the density matrix of neutrinos measured at

the fluid rest frame. In the expression, the directional cosines `
F
(i)

are also defined on the fluid rest frame, i.e., they are measured

from ê(1). The ê(1) can be obtained by following prescription in

[2] (see Eqs.14-20 in the paper).

- Global Simulations: code development
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FIG. 1. All plots show f⌫xx/(f⌫ee + f⌫xx) as functions of radius and cos ✓⌫ . Top and bottom panels show results of Model-�1
and Model-�4, respectively. The left and middle panels display the result at t = 0.1ms and 0.5ms, respectively. The right
panels depict time-averaged distributions in a quasi-steady state phase (0.3ms  t  0.5ms). The black solid line in each panel
represents a trajectory of neutrinos emitted perpendicular to the radial direction at the inner boundary (r = 50km).

at outer boundary. h
(�)

f eei and
(�)

� ee are control parame-
ters, which are directly associated with the number den-
sity and anisotropy of angular distributions of neutrinos,
respectively. In this study, number density of ⌫e (n⌫) is
set to be ⇠ 6⇥1032cm�3 at 50km (inner boundary in our
simulations), which corresponds to L⌫ ⇠ 4 ⇥ 1052erg/s
and Eave ⇠ 12MeV at the same radius, where L⌫ and
Eave denotes the ⌫e luminosity and average energy, re-
spectively. We assume hfeei = hf̄eei, �ee = 0, and
�̄ee = 1, which are chosen so as to generate a Type-
II electron-neutrino lepton number (ELN) crossing (see
[9]). The parameter ⌘ in Eq. 3 represents the diluteness of
incoming neutrinos emitted from outer boundary, which
is set to be ⌘ = 10�6 just for simplicity.

In the setup, the oscillation wavelength of FFC at
50km is of the order of centimeter. The required radial
resolution is, hence, ⇠ 0.1cm, illustrating that unfeasi-
ble computational resources are needed for global simu-
lations. We tackle this issue in the following way. First,
we introduce a new parameter, �, which represents a re-
duction factor of n⌫ , and it is determined so as to make
global simulations tractable. Second, we run multiple
simulations with di↵erent choice of �; in this Letter we
study four cases: � = 10�4 (Model-�1), 2⇥10�4 (Model-
�2), 4⇥ 10�4 (Model-�4), and 8⇥ 10�4 (Model-�8). To
see the impact of angular resolution, we also run another
simulation (Model-�1h), in which � is set to be the same

as Model-�1 but the angular resolution is twice higher.
By analyzing these models, we study general properties
of FFC in global scale, and then consider what happens
in the case without reduction of n⌫ (� = 1).
In our simulations, we cover a spatial domain of

50km  r  100km except for Model-�8. Although
Model-�8 covers the narrow spatial domain (50km  r 
60km), it corresponds to the highest n⌫ among our mod-
els, and therefore the model is worthy to extrapolate our
results to the case with � = 1. We deploy 128 angular
grid points in our simulations, and only Model-�1h has
256 angular points. In the radial direction, we employ
uniform grids with 24576 (for Model-�1 and Model-�1h),
49152 (for Model-�2), 98304 (for Model-�4), and 49152
(for Model-�8) points. It should be stressed that these
large number of grids are necessary to resolve FFC in
global simulations; otherwise we need to further reduce
�. As shall be shown below, however, this would lead to
qualitatively di↵erent results, since FFC would not grow
substantially in these cases.
We impose a Dirichlet boundary condition for outgo-

ing neutrinos (cos ✓⌫ > 0) at the inner boundary, and
for incoming neutrinos (cos ✓⌫ < 0) at the outer one.
In the opposite directions, we impose a free-streaming
boundary condition. To prepare the initial condition,
we run the simulations without FFC until the system
settles into a steady state. In FFC simulations, we fol-
low the time evolution up to 0.5ms (0.12ms only for

Large-scale (50km – 100km) FFC simulations
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tion). These simulations are useful to demonstrate how
FFCs give impacts on CCSN and BNSM dynamics quali-
tatively. On the other hand, their outcome hinges on the
instability criteria and the choice of parameter for neu-
trino mixings, exhibiting that better approximate pre-
scriptions are required to gauze accurate sensitivity of
CCSN and BNSM dynamics to FFCs.

Recently we proposed a novel approach to pave the
way towards incorporating FFCs into CCSN and BNSM
simulations [48] (hereafter the paper is referred to as
NZv1). In this approach, neutrino transport is solved
with quantum kinetic treatments with attenuating neu-
trino Hamiltonian potentials parametrically. Thanks to
the attenuation of the Hamiltonian, large-scale FFC sim-
ulations can be carried out with feasible computational
costs. It is also worth to note that our proposed method
can be used for other studies of neutrino flavor conver-
sions; for instance, Xiong et al. [49] recently carried out
large-scale simulations of collisional instability with at-
tenuating Hamiltonian.

In NZv1, we performed FFC simulations in 50km spa-
tial scales (50km  R  100km), and then we ana-
lyzed their global features. We found that the time-
averaged neutrino distributions are insensitive to the at-
tenuation of Hamiltonian1, suggesting that the similar
time-averaged profile would appear in the case without
the attenuation. We also found in NZv1 that the di↵er-
ence of angular distributions of ELN (electron-neutrino
lepton number) and XLN (heavy-neutrino lepton num-
ber) is a key quantity to determine the non-linear satu-
ration of flavor conversion, and to characterize the subse-
quent quasi-steady state of FFCs. In fact, the ELN-XLN
angular crossings become very shallow or even disappear
in the time-averaged profile after the system reaches non-
linear saturation. As such, NZv1 illustrated that the pro-
posed method, attenuating Hamiltonian, can bring new
insights on FFCs. This method is also expected to play a
crucial role to connect local- and global features of neu-
trino quantum kinetics.

In this paper, we extend our previous study in NZv1
by covering various initial states of neutrinos. This study
is motivated by the fact that we focused on the ability
of our new approach in NZv1, and therefore we fixed
the initial angular distributions of neutrinos. However,
it is necessary to carry out a systematic study for vari-
ous initial conditions so as to capture generic features of
FFCs. To analyze the large-scale numerical simulations,
we also carry out local simulations in the vicinity of inner
boundary without attenuation of Hamiltonian. We shall
show that some intrinsic features of FFCs can be com-
plemented from these small-scale simulations. Finally, we
provide an approximate method that determines quasi-

1 A word of caution should be spent here. Extreme attenuation
of Hamiltonian potential lead to no flavor conversion. This in-
dicates that there is a threshold in the attenuation-parameter to
capture the qualitative trend of FFCs in global scales.

steady states of FFC without solving QKE. For future
users, we provide a recipe of the method, which can be
easily implemented in existing classical neutrino trans-
port codes.
This paper is structured as follows. In Sec. II we first

review the essence of our approach, attenuation of Hamil-
tonian potentials, for large-scale QKE simulations. We
then describe our models in Sec. III. All numerical re-
sults presented in this paper are encapsulated in Sec. IV.
The approximate method to determine the quasi-steady
state of FFCs is described in Sec. V. Finally, we summa-
rize our conclusions and key messages from the present
work in Sec. VI. Throughout the paper, we use the unit
with c = h̄ = 1, where c and h̄ are the light speed and
the reduced Planck constant, respectively; we choose the
metric signature of �+++.

II. METHOD

The numerical simulations presented in this paper are
carried out with a newly developed QKE neutrino trans-
port code, GRQKNT. Details of the design and a suite
of tests are presented in [50]. Here, we describe only the
essential components of the code directly related to this
present work.
In GRQKNT, we adopt a discrete-ordinate Sn method.

The transport operator is handled with 5th-order
weighted essentially non-oscillatory (WENO) scheme
with a five-stage fourth-order TVD Runge-Kutta. In this
study, we assume spherical symmetry and ignore general
relativistic e↵ects, fluid-velocity dependence, and the col-
lision term. The resultant QKE can be written as,

@

(�)

f

@t
+

1

r2

@

@r
(r2 cos ✓⌫

(�)

f )� 1

r sin ✓⌫

@

@✓⌫
(sin2 ✓⌫

(�)

f )

= �i ⇠ [
(�)

H ,

(�)

f ],

(1)

where f and f̄ represent the density matrix of neutrinos
and antineutrinos, respectively. t, r, and ✓⌫ denote time,
radius, and neutrino flight angle with respect to radial
direction, respectively. H (H̄) represents the neutrino
(antineutrino) oscillation Hamiltonian potential, which is
composed of vacuum-, matter-, and self-interaction com-
ponents. In this study, the matter potential is set to
be zero, but we reduce the mixing angle in the vacuum
potential from that constrained by experiments. This
is a common prescription to e↵ectively include e↵ects of
matter potential2. In this study, the vacuum potential
is added as a perturbation to trigger FFCs3. Following
the previous studies as NZv1, we adopt the two-flavor

2 It is also equivalent to work with polarization vectors of neutrinos
in a co-rotating frame, see [51].

3 As we shall show in Sec. IV, flavor conversions are a↵ected by
vacuum potentials in some of our models. Although the neu-

Attenuating Hamiltonian
See also Xiong et al. arXiv:2210.08254
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FIG. 2. Radial profiles of time-averaged neutrino number density in a quasi-steady state. In the left panel, we show nνe

normalized by that at 50km. For comparison, the result without FFC is also shown as a black solid line. In the right panel, we
display nνx/(nνe + nνx), which corresponds to a useful metric to see the degree of flavor conversion.

energy, respectively. We note that the vacuum oscillation
is only important to trigger FFC, and it does not affect
non-linear regimes of FFC in our models. We confirm by
linear analysis that Γ = 10−4 is large enough so that the
fast mode dominates over the slow one.
Results.—Figure 1 shows color maps of fxx normalized

by fee + fxx as functions of radius and neutrino angle.
The black solid line in each panel portrays the radial tra-
jectory of neutrinos emitted perpendicular to radial di-
rection (cos θν = 0) at the inner boundary. This exhibits
a transition to forward-peaked angular distributions of
neutrinos.
As shown in Fig. 1, FFC commonly occurs in our mod-

els (appearance of νx is a sign of flavor conversion). In
the vicinity of inner boundary, however, no strong flavor
conversions occur (see, e.g., 50km < r <

∼ 65km in the
top left panel of Fig. 1), whereas the region becomes nar-
rower with increasing nν (see the bottom panels). This
is attributed to the fact that the growth of FFC becomes
more rapid with increasing nν

1.
Once neutrinos, initially emitted in the radial direc-

tion from the inner boundary, arrive at a certain ra-
dius, flavor structures in all neutrino angles are disor-
ganized (see, e.g., bottom left panel of Fig. 1), despite
the fact that neutrinos traveling in non-radial directions
have not reached yet (since the propagation speed of neu-
trinos with respect to radial direction is proportional to
cos θν). This indicates that the flavor conversion in non-
radial directions is not a consequence of spatial advection

1 In the case without reduction of nν , the width of corresponding
region is only ∼ 20cm; see the left panel of Fig. 11 in [26].

from the inner region (where FFC has already been well
developed), but rather local angular-couplings of FFC.
This also exhibits that neutrinos emitted from the outer
boundary can experience strong flavor conversion. Since
the incoming neutrinos are very dilute, their contribu-
tion to neutrino self-interaction potential is very minor,
suggesting that the flavor conversion is passively induced
by outgoing ones. These incoming neutrinos, possessing
finite flavor off-diagonal components of the density ma-
trix, advect inward, which facilitates the growth of FFC
in the linear regime.

Strong flavor conversion occurs even in the case of low
nν models at late times (see the top middle panel of
Fig. 1), and we find that the system eventually achieves
a quasi-steady state. One of the striking results in this
study is that the degree of flavor conversion does not
hinge on nν in the quasi-steady phase. This trend is
more visible in time-averaged distributions. We com-
pute the time-averaged f by integrating over the time
of 0.3ms ≤ t ≤ 0.5ms; the results are shown in right pan-
els of Fig. 1. Fig. 2 also displays the radial profiles of
time-averaged number density of νe and the ratio of nνx

to nνe
+nνx

in the left and right panel, respectively, for all
models (for Model-Γ8, we compute the time-averaged f
in the time range of 0.06ms ≤ t ≤ 0.12ms). Both figures
illustrate that the degree of flavor mixing is universal. It
should also be mentioned that the angular resolutions in
our simulations does not compromise the time-averaged
profile (see the red dashed-line in Fig. 2 displaying the
result of Model-Γ1h). The result of Model-Γ8, that cor-
responds to the model with the highest spatial resolution
and the modest Γ, also strengthens our conclusion. As
shown in Fig. 2, the results of other models clearly ap-
proach to Model-Γ8 with increasing nν . This lends con-

Time-averaged structures are insensitive to attenuation of Hamiltonian.
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fidence to our claim that the case of Γ = 1 (no reduction
of nν) can be studied from these results.

Temporal- and spatial variations of FFC are vigorous
even after the system reaches a quasi-steady state, indi-
cating that the system never achieves the exact steady
state. On the other hand, these fluctuations become
mild with increasing radius (see the region of 80km <

∼
r <

∼ 100km in Fig. 1). In the sense of classical neu-
trino transport, this feature is at odds, because temporal
variations generated at the inner region can be sustained
in the free-streaming region. The suppression of inho-
mogeneity is, hence, dictated by quantum effects. Since
neutrinos propagating along different trajectories have
random temporal variations, these variations can be can-
celed each other through self-interactions. We note that
this is different from the so-called ”kinematic decoher-
ence” (see, e.g., [1]), albeit similar mechanism. In fact,
the vacuum oscillation is nothing to do with them, and
more importantly, the flavor equipartition has been al-
most achieved at the inner region. Our result suggests
that temporal variations of FFC occurring deep inner
core would be smeared out during the flight in the free
streaming region.

Finally, we analyze angular distributions of neutrinos
in quasi-steady state, which provides a new insight to
understand non-linear saturation of FFC. In this analy-
sis, we pay a special attention to angular distributions of
ELN and XLN (heavy-neutrino lepton number). We find
that the time-averaged ELN angular distribution sub-
tracted by that of XLN (hereafter, we refer to it as ELN-
XLN angular distribution) is a key quantity. As shown
in the right panel of Fig. 3, ELN-XLN angular cross-
ings, which exists at the inner boundary, disappear at

large radii, whereas ELN crossings still remains (see left
panel of Fig. 3). Our result suggests that FFC evolves to-
wards eliminating ELN-XLN angular crossings in the lin-
ear phase, and then the growth of FFC is saturated when
the ELN-XLN crossing vanishes. Although we postpone
the detailed study of the mechanism [27], our interpreta-
tion is supported by a linear analysis. As is well known,
ELN crossing is a good indicator of occurrence of FFC.
However, this is true only if heavy leptonic neutrinos
and anti-partners are zero or they have the same angular
distributions each other. In non-linear regime of FFC,
heavy leptonic neutrinos and their antipartners substan-
tially emerge with different angular distributions. Hence,
their contribution needs to be taken into account. Since
the traceless part of density matrix is proportional to
(fee − f̄ee) − (fxx − f̄xx) in two flavor system (see, e.g.,
[28]), ELN-XLN crossings are more natural quantities to
characterize the stability of FFC than ELN ones.

Conclusions.— This paper presents large-scale (50km)
simulations of FFC in spherical symmetry by using
GRQKNT code [26]. We make simulations tractable
by reducing neutrino number density (nν) at the inner
sphere. By running multiple simulations with changing
the reduction rate of nν , we can study temporal- and
quasi-steady features of FFC on > 10km spatial scale.
One striking result found in this study is that the time-
averaged distributions of FFC is less sensitive to nν .
We also find that the fluctuations are smoothed out at
the outer radii as a consequence of phase cancellation
through neutrino self-interactions. These features would
not be changed in the case without reduction of nν . Our
simulations suggest that ELN-XLN angular distribution
is a key quantity to characterize non-linear saturation of

Disappearance of ELN-XLN angular crossings is a key ingredient to characterize 
asymptotic states of FFC in non-linear phase.

Nagakura and Zaizen 2022 (PRL and PRD)
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Roles of fast neutrino-flavor conversion on the neutrino-heating mechanism of
core-collapse supernova

Hiroki Nagakura⇤

Division of Science, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan

One of the greatest uncertainties in any modeling of inner engine of core-collapse supernova
(CCSN) is neutrino flavor conversions driven by neutrino self-interactions. We carry out large-scale
numerical simulations of multi-energy, multi-angle, three-flavor framework, and general relativistic
quantum kinetic neutrino transport in spherical symmetry with an essential set of neutrino-matter
interactions under a realistic fluid profile of CCSN. Our result suggests that the neutrino heating
in the gain region is reduced by ⇠ 50% due to fast neutrino-flavor conversion (FFC). We also find
that the total luminosity of neutrinos is enhanced by ⇠ 30%, for which the substantial increase of
heavy-leptonic neutrinos by FFCs are mainly responsible. This study provides evidence that FFC
has a significant impact on the delayed neutrino-heating mechanism.

Introduction.—Most massive stars end their lives as
catastrophic explosions known as core-collapse super-
novae (CCSNe). It is well established that neutrinos are
key players in determining success or failure of explo-
sion (see [1–3] for recent reviews). Their primary role on
explosions is transport of thermal energy from the vicin-
ity of proto-neutron star (PNS) to the gain region where
there is net neutrino heating in post-shock region. Re-
cent CCSN simulations have yielded successful explosions
more often than not, in which neutrino heating aided by
multi-dimensional (multi-D) fluid instabilities deposits
enough energy to revive a stalled shock wave. This lends
support to the delayed neutrino-heating mechanism.

There remains a large uncertainty in the explosion
mechanism, however. The current CCSN model heavily
relies on an assumption that neutrino flavor conversion
is suppressed by refractive e↵ects of matter in neutrino
oscillation. It has been suggested that another refrac-
tive e↵ect by neutrino self-interactions can induce insta-
bilities of flavor conversions (see [4–7] for reviews). De-
tailed inspections of the neutrino data obtained by multi-
D CCSN simulations suggested that fast neutrino-flavor
conversion (FFC), which o↵ers the fastest growth mode
of flavor conversion, ubiquitously occur in CCSN core
[8, 9]. Since the timescale of the flavor conversion can be
shorter by several orders than dynamical timescale, FFC
has the power to break the neutrino-matter equilibration
in optically thick region [10]. This exhibits a possibility
of radical change of both neutrino- and fluid dynamics.

In this Letter, we present large-scale numerical sim-
ulations of multi-energy, multi-angle and general rela-
tivistic quantum kinetic neutrino transport with essential
neutrino-matter interactions under a fluid background
taken from one of our CCSN simulations. We quantify
the impact of FFC on neutrino cooling and heating in the
optically thick and thin (or gain) regions, respectively.
We also provide some key quantities in neutrino momen-
tum space: angular distributions and energy spectra. In
this study, we pay a special attention to astrophysical

⇤ hiroki.nagakura@nao.ac.jp

aspects in roles of FFC on CCSNe. Detailed discussions
of FFC properties will be deferred to another paper (Na-
gakura and Zaizen in prep.).
Method and model.—We solve a spherically symmetric

quantum kinetic equation (QKE) for neutrino transport
by GRQKNT code [11]. General relativistic e↵ects are
taken into account in one of our models by assuming
Schwarzschild spacetimes, which is a reasonable approxi-
mation outside of a PNS. Assuming spherically symmetry
and ultrarelativistic neutrinos, the QKE can be written
as (see also Eq. 15 in [11]),
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which is expressed in the unit with c = G = 1, where
c and G are the light speed and the gravitational con-
stant, respectively. In the expression, t, r, M denote
time, radius, and black hole mass, respectively. ⌫ and ✓⌫

represent the neutrino energy and flight angle in momen-
tum space, which are defined in the local orthonormal
frame with the timelike unit normal to spatial hypersur-

faces.
(�)

f ,
(�)

S , and
(�)

H denote the density matrix of neutri-
nos, collision term, and Hamiltonian operators associated
with neutrino flavor conversion, while the upper bar de-
notes those for antineutrinos. QKE in flat-spacetimes
can be restored by M = 0 in Eq. 1. In this study,
we consider QKE in both two- and three flavor frame-
works. The matter potential is ignored, but leave the
vacuum potential with reduced mixing angles. We adopt
normal mass hierarchy with squared mass di↵erences of
�m

2 = 2.5⇥ 10�6eV2 for two flavor approximation, and
�m

2
21 = 7.42⇥10�5eV2 and �m

2
31 = 2.51⇥10�3eV2 for

three flavor one, while all mixing angles are assumed to
be 10�6. ⇠ in the right hand side of Eq. 1 denotes an at-
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FIG. 2. Radial profiles of three key quantities. Left: gain energy from neutrinos. Each color corresponds to a di↵erent model.
Middle: average energy of neutrinos. Line type distinguishes the species of neutrinos. Right: energy flux of neutrinos.

potentially hinders the delayed neutrino-heating mecha-
nism. It may be, however, premature to conclude that
FFCs play negative roles on explosions. As shown in
the same figure, neutrino cooling in optically thick re-
gion is higher in M3F than NFC. Indeed, we find that
the total energy flux of neutrinos at the outer boundary
is increased by ⇠ 33%. This leads to higher matter tem-
perature due to an e�cient contraction of PNS and then
the average energy of neutrinos would also be increased,
that would facilitate neutrino absorptions in the gain re-
gion. This suggests that feedback from neutrino-matter
interactions to fluid dynamics needs to be included to de-
termine whether FFC has a positive or negative role on
driving explosion. The detailed investigation on this is-
sue requires radiation-hydrodynamic simulations, which
is beyond the scope of this paper and will be addressed
in future work.

It is worthy of note that the average energy of electron-
type neutrinos (⌫e) and their antipartners (⌫̄e) in M3F
become higher than the case with NFC (see middle panel
in Fig. 2). This is attributed to the fact that some heavy-
leptonic neutrinos (⌫x), having the highest energy among
flavors, convert to ⌫e and ⌫̄e. On the other hand, energy
fluxes of ⌫e and ⌫̄e become lower (see the right panel of
Fig. 2), which is also due to lower energy flux of ⌫x in
NFC. These two e↵ects compete with each other regard-
ing neutrino heating, and the latter e↵ect dominates over
the former. We also find that the energy flux of ⌫x(ave),
averaging over ⌫x and ⌫̄x, are substantially increased in
M3F, whereas their average energy becomes lower than
the case with NFC. This trend is qualitatively in line with
results of radiation-hydrodynamic simulations of binary
neutron star merger remnant [24, 25].

We make remarks on model-dependent features on
neutrino heating. First, the impact of FFC in M2F is
less remarkable than M3F (see in the left panel of Fig. 2);
the net gain energy is ⇠ 16% lower than the case with
NFC. This indicates that ⌫e- and ⌫̄e conversions to heavy-
leptonic neutrinos are mild compared to the three fla-
vor framework, which is consistent with the di↵erence of

flavor equipartition between these frameworks. Our re-
sult exhibits the importance of three flavor framework to
quantify the actual impact of FFCs on CCSNe. Next, we
find that M3FGR has essentially the same result as M3F,
suggesting that GR e↵ects are subdominant. Quanti-
tatively speaking, however, we find neutrino cooling in
the semi-transparent region (⇠ 50km) is suppressed in
M3FGR. The lower neutrino cooling exhibits that the
number (or energy) density of ⌫e and ⌫̄e is higher than
those in the case with NFC, since the increase of neu-
trino population leads to larger blocking factor for neu-
trino emission and also higher neutrino absorption there.
The increase of neutrino number is a natural outcome
of redshift e↵ect, since the average-energy of neutrinos
becomes lower, resulting in the larger neutrino di↵usion
due to the lower opacity. Finally, we confirm that M3FH
model, which has the highest resolution with the modest
⇠, shows the essentially identical result to M3F.

In Fig. 3, we show energy-integrated angular distribu-
tions (top) and angular-integrated energy spectra (bot-
tom) for each flavor of neutrinos. Here, we again focus on
the result of M3F to discuss key rolls of FFCs in chang-
ing neutrino distributions in momentum space. The left
panels exhibit that FFC can change both angular dis-
tribution and energy spectrum of neutrinos in optically
thick region. One thing we do notice here is that an
ELN crossing appears at cos ✓⌫ ⇠ 0 in NFC, which guar-
antees that FFC occurs in M3F. The flavor conversion
is vigorous at cos ✓⌫ ⇠ 1, and the flavor equipartition
is nearly achieved in the same angular direction. ⌫̄e is
reduced more substantially than ⌫e, which seems to be
due to larger population of ⌫̄e than ⌫e in this direction.
For incoming neutrinos (cos ✓⌫ < 0), the conversion be-
comes ine�cient, but it is still noticeable for ⌫x(ave). The
substantial change of ⌫x(ave) can also be seen in the en-
ergy spectrum, whose feature is strongly dependent on
energy. In the high energy region (>⇠ 40MeV), ⌫x(ave) in
M3F is remarkably lower than NFC, whereas the di↵er-
ence between NFC and M3F is subtle for ⌫e and ⌫̄e. This
result exhibits that FFC o↵ers a new channel to absorb

Neutrino heating mechanism

Covering a wide post-shock region
Solving GRQKNT (Schwarzschild spacetimes)
Collision terms are taken into account.
Neutrino-heating is suppressed by FFCs
Neutrino-cooling is accelerated by FFCs

2

TABLE I. Summary of our models.

model spacetime flavor ⇠ �rmin [cm] Nr

M3F flat 3 10�4 30 12,288

M3FGR BH (1.5M�) 3 10�4 30 12,288

M2F flat 2 10�4 30 12,288

M3FH flat 3 2⇥ 10�4 15 24,576

tenuation parameter of Hamiltonian potential. Although
attenuating Hamiltonian is unphysical and rather prag-
matic, we can discuss realistic features by varying ⇠ (see
also [12, 13]).

Neutrino-matter interactions are one of the key ingre-
dients not only for exchanging lepton, energy, and mo-
mentum between neutrinos and matter, but also for FFC
dynamics itself [14–18]. In this study, we consider an es-
sential set of weak processes in CCSN: electron-capture
by free proton and positron capture by free neutron as
emission processes, these inverse-reactions as absorption
processes, and also isoenergetic scatterings with nucleons
and nuclei (see [11] for the explicit form of each reaction).
The reaction rate is computed by giving a fluid profile,
which is set by using a result of spherically symmetric
CCSN simulation in [19] at the time snapshot of 300
ms after bounce for 15 M� progenitor computed in [20],
where M� denotes the solar mass. Thermodynamical
quantities and nuclear abundance, which are necessary
quantities to compute weak interactions, are obtained
with a nuclear statistical equilibrium equation-of-state
based on the variational method [21].

We note that electron-lepton number (ELN) crossing,
which is a necessary and su�cient condition to trigger
FFCs, is unlikely to occur in the post-shock region in
spherically symmetric models. It has been recently re-
vealed, however, that lower electron-fraction (Ye) envi-
ronments can be generated by multi-D fluid instabilities,
which o↵ers a preferable condition for occurrences of FFC
[22, 23]. We, hence, adopt Ye profile as 10% reduction
from that in the CCSN model, while baryon mass density
(⇢) and temperature (T ) profiles are directly taken from
the data (see Fig. 1). We confirm that ELN-crossing ap-
pears at >⇠ 30km in the simulation of classical neutrino
transport (hereafter denoted as no flavor conversion or
NFC model).

In this study, we focus on a spatial domain of 20km 
r  100km which covers from optically thick to thin re-
gions. The radial grid is nonuniform, in which the grid
width increases geometrically. We adopt a uniform grid
for directional cosine of neutrino flight directions with
96 grid points. We cover 0MeV  ⌫  80MeV in the
neutrino energy with 12 grid points. The lowest-energy
grid covers from 0MeV  ⌫  2MeV and the rest of the
energy grids is discretized logarithmically.

To set an initial condition, we run two simulations (flat
spacetime and black hole one) as NFC models until the
system reaches an equilibrium state. At the inner bound-
ary in space, we adopt a Dirichlet boundary condition
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FIG. 1. Fluid profile at 300 ms after bounce for 15M� progen-
itor in a CCSN model of [19]. We display baryon mass density
(⇢) and temperature (T ) as blue and green lines, respectively.
We adopt electron-fraction Ye with 10% reduction (red solid
line) from that obtained the original CCSN simulation (red
dashed line). See text for more details.

for outgoing neutrinos by assuming that neutrinos are
in equilibrium with matter. For incoming neutrinos, we
adopt a free boundary condition. At the outer boundary,
we assume no neutrinos in the incoming directions, while
we use a free boundary condition for outgoing neutrinos.
In Table I, we summarize numerical setup and some pa-

rameters that characterize each model. M3F represents
a reference model, in which flat spacetimes (M = 0) and
three flavor framework are assumed. GR e↵ects can be
studied from M3FGR, in which we adopt M = 1.5M�,
while other setups are the same as those used in M3F.
We also run a simulation with two flavor framework (M2F
model). We adopt ⇠ = 10�4 and Nr = 12288 (the num-
ber of radial grid) for all these three models. To check the
dependence of attenuation parameter, we run M3FH, in
which we set ⇠ = 2⇥10�4 with higher spatial resolutions;
the smallest grid width, �rmin, is 15cm and Nr is 24576.
We run each simulation for 1ms and confirm that the sys-
tem reaches in a quasisteady state. Since we are currently
interested in astrophysical aspects, temporal variations of
FFCs are not our focus and time-averaged quantities are
more appropriate for the discussion. We, hence, extend
each simulation for 0.05ms, and all results presented be-
low are computed based on the time-averaged quantities
during the time interval.
Results.— Left panel in Fig. 2 displays radial profiles

of net gain energy from neutrinos. As a representative
case, we first focus on M3F model. As shown in the
panel, the neutrino heating in the gain region becomes re-
markably lower than NFC. More quantitatively, the gain
radius is increased by ⇠ 7%, causing the reduction of
baryon mass (⇠ 23%) in the gain region. The local neu-
trino heating rate is also reduced, resulting in ⇠ 48%
reduction of the net gain energy. This suggests that FFC
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Correlation analysis with gravitational waves is of great use.
Nagakura and Vartanyan in prep

Can we observationally place a constraint on 
neutrino flavor conversion in CCSNe?
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Table 1. Fitting coe�cients for the time evolution of TONE along the constant PNS mass. See Eq. 1 for definition of coe�cients.

PNS baryon-mass [M�] a0 a1 a2 a3 a4 a5 a6 a7

1.2 0.5333 13.93 -16.66 14.34 -7.168 2.039 -0.3076 1.909⇥ 10�2

1.3 0.5566 16.10 -18.10 15.13 -7.471 2.117 -0.3193 1.982⇥ 10�2

1.4 0.5831 18.34 -19.70 16.04 -7.850 2.220 -0.3348 2.080⇥ 10�2

1.5 0.6135 20.66 -21.43 17.11 -8.318 2.351 -0.3548 2.207⇥ 10�2

1.6 0.6486 23.06 -23.30 18.34 -8.888 2.513 -0.3800 2.367⇥ 10�2

1.7 0.6893 25.55 -25.35 19.78 -9.578 2.714 -0.4113 2.567⇥ 10�2

1.8 0.7371 28.15 -27.59 21.47 -10.41 2.959 -0.4496 2.813⇥ 10�2

1.9 0.7937 30.87 -30.06 23.43 -11.41 3.256 -0.4964 3.113⇥ 10�2

2.0 0.8619 33.72 -32.82 25.74 -12.61 3.615 -0.5530 3.477⇥ 10�2

2.1 0.9456 36.72 -35.90 28.47 -14.06 4.048 -0.6212 3.916⇥ 10�2

2.2 10.508 39.89 -39.38 31.69 -15.78 4.567 -0.7031 4.443⇥ 10�2

Table 2. Fitting coe�cients for the time evolution of PNS radius along the constant PNS mass. See Eq. 2 for definition of coe�cients.

PNS baryon-mass [M�] b0 b1 b2 b3 b4 b5 b6 b7

1.2 2.097 -3.545 4.855 -3.982 1.931 -0.5429 8.163⇥ 10�2 �5.062⇥ 10�3

1.3 2.140 -3.689 5.146 -4.302 2.120 -0.6042 9.178⇥ 10�2 �5.738⇥ 10�3

1.4 2.182 -3.826 5.422 -4.607 2.302 -0.6629 0.1015 �6.387⇥ 10�3

1.5 2.223 -3.957 5.686 -4.899 2.477 -0.7193 0.1109 �7.012⇥ 10�3

1.6 2.262 -4.082 5.938 -5.179 2.644 -0.7735 0.1199 �7.613⇥ 10�3

1.7 2.299 -4.201 6.178 -5.448 2.805 -0.8258 0.1286 �8.193⇥ 10�3

1.8 2.336 -4.314 6.409 -5.707 2.960 -0.8762 0.1369 �8.754⇥ 10�3

1.9 2.371 -4.424 6.630 -5.955 3.110 -0.9249 0.1450 �9.296⇥ 10�3

2.0 2.406 -4.528 6.842 -6.195 3.255 -0.9720 0.1529 �9.821⇥ 10�3

2.1 2.439 -4.629 7.047 -6.427 3.395 -1.0177 0.1605 �1.033⇥ 10�2

2.2 2.472 -4.725 7.244 -6.650 3.531 -1.0619 0.1679 �1.082⇥ 10�2
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Figure 4. TONE as a function of time along a constant PNS baryon-
mass: 1.2, 1.4, 1.6, 1.8, 2.0, and 2.2M�. The fitting function of each
line is summarized in Table 1.

consider cases for representative terrestrial neutrino obser-
vatories: SK (HK), DUNE, JUNO, and IceCube; and their
detector volume is assumed to be 32.5(220) ktons, 40 ktons,
20 ktons, and 3.5 Mtons, respectively. For simplicity, we only
consider the major reaction channel at each detector: IBD-p
for SK, HK, and IceCube; the charged-current reaction with
argon for DUNE. For neutrino oscillation models, we adopt
adiabatic Mikheyev-Smirnov-Wolfenstein (MSW) model for
both normal- and inverted mass hierarchy. The uncertainty
of neutrino oscillation model will be discussed in Sec. 6. In
this study, we do not take into account Poisson noise, whereas

the smearing e↵ects in detector response that are equipped
with SNOwGLoBES are included.

As described in previous sections, we use the time-
dependent cumulative number of neutrino events (NCum) at
each detector. Under the adiabatic MSW neutrino oscillation
model, we can estimate TONE (E52) from NCum as (see also
Eqs. 23-30 in Nagakura et al. (2021c)),

[SK� IBDp�NORMAL]

NCum =
�
220E52 + 5E2

52 � 0.074E3
52 + 0.0003E4

52

�
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V
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d

10 kpc

◆�2

, (3)

[DUNE� CCAre�NORMAL]
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52 + 0.00028E4
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d
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, (4)
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52 � 0.082E3
52 + 0.00039E4

52

�

✓
V

20 ktons

◆✓
d

10 kpc

◆�2
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, (6)

in the normal mass hierarchy; V denotes the detector volume.
In the case with the inverted mass hierarchy, the functions

MNRAS 000, 1–11 (2021)

Irradiated neutrino energy versus time

Nagakura and Vartanyan 2022, MNRAS



18

N
C

um

EGW [1046 erg]

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0  1  2  3
 0

 0.2

 0.4

 0.6

 0.8

 1
SK-IBD-p at 10kpc
Tb=4 (s)

p-=0

p-=1

MPNS=1.5 MPNS=1.7 MPNS=2.0

p-

Constraining survival probability of neutrinos 
from correlation analysis of GWs and neutrino signals



19

Neutrino flavor conversion induced by self-interactions is one of the greatest 
uncertainties in CCSN/BNSM theories.

The research field is rapidly evolving owing to both phenomenological and 
first-principles approaches of quantum kinetic neutrino transport.

ELN-XLN crossings characterize not only the FFC instability but also their 
asymptotic states.

Attenuation of Hamiltonian allows us to carry out global simulations.

We demonstrate in large-scale QKE simulations that FFCs give large impact on 
CCSN explosion.

The correlation analysis of GWs and neutrinos in realistic theoretical models 
can break the degeneracy between detection counts and flavor conversion.

Summary:


