Towards self-consistent modeling of supernova and binary neutron star merger with quantum kinetic neutrino transport

Hiroki Nagakura
 (National Astronomical Observatory of Japan)

Multi-physics elements in CCSN and BNSM theories

- Towards ultimate? simulations-

Dimensionality Beyond Boltzmann (QKE) Neutrino (for Hydro)

Gravity

Fast neutrino-flavor conversion may ubiquitously occur in CCSN and BNSM

Abbar et al. 2019
Space-time diagram of ELN-angular crossings in CCSNe

Nagakura et al. 2021

Wu and Tamborra 2017

Richers 2022

Quantum Kinetic neutrino transport:

$$
p^{\mu} \frac{\partial \stackrel{(-)}{f}}{\partial x^{\mu}}+\frac{d p^{i}}{d \tau} \frac{\partial \stackrel{(-)}{f}}{\partial p^{i}}=-p^{\mu} u_{\mu} \stackrel{(-)}{S}_{\mathrm{col}}+\frac{i p^{\mu} n_{\mu}[\stackrel{(-)}{\mathrm{H}}, \stackrel{(-)}{f}]}{\text { Oscillation term }}
$$

Challenge: Huge disparity in scales between neutrino oscillations and CCSN/BNSM

$$
\ell_{\mathrm{n}_{\nu}} \equiv c \mathrm{~T}_{\mathrm{n}_{\nu}}
$$

Scale of
fast collective-mode

$$
\begin{aligned}
\mathrm{T}_{\mathrm{n}_{\nu}} \equiv & \left(\sqrt{2} G_{F} n_{\nu}\right)^{-1} \\
= & 7.84 \times 10^{-12} \mathrm{~s}\left(\frac{L_{\nu}}{4 \times 10^{52} \mathrm{erg} / \mathrm{s}}\right)^{-1} \\
& \left(\frac{E_{\text {ave }}}{12 \mathrm{MeV}}\right)\left(\frac{R}{50 \mathrm{~km}}\right)^{2}\left(\frac{\kappa}{1 / 3}\right)
\end{aligned}
$$

$$
=0.235 \mathrm{~cm}\left(\frac{L_{\nu}}{4 \times 10^{52} \mathrm{erg} / \mathrm{s}}\right)^{-1}
$$

$$
\left(\frac{E_{\mathrm{ave}}}{12 \mathrm{MeV}}\right)\left(\frac{R}{50 \mathrm{~km}}\right)^{2}\left(\frac{\kappa}{1 / 3}\right)
$$

CCSN/BNSM scale
$>100 \mathrm{~ms}$
$>1000 \mathrm{~km}$

Phenomenological approach: Philosophy

Li and Siegel 2021, Just et al. 2022, Fernandez et al. 2022, Jacob et al. 2023

Radiation-hydrodynamic simulations with classical neutrino transport

$$
p^{\mu} \frac{\partial f}{\partial x^{\mu}}+\frac{d p^{i}}{d \tau} \frac{\partial f}{\partial p^{i}}=\left(\frac{\delta f}{\delta \tau}\right)_{\mathrm{col}}
$$

Boltzmann transport

or

$$
\begin{aligned}
\partial_{t}(\sqrt{\gamma} E)+ & \partial_{j}\left[\sqrt{\gamma}\left(\alpha F^{j}-\beta^{j} E\right)\right] \\
& =\alpha \sqrt{\gamma}\left[P^{i j} K_{i j}-F^{j} \partial_{j} \ln \alpha-S^{\alpha} n_{\alpha}\right], \\
\partial_{t}\left(\sqrt{\gamma} F_{i}\right) & +\partial_{j}\left[\sqrt{\gamma}\left(\alpha P_{i}^{j}-\beta^{j} F_{i}\right)\right] \\
& =\sqrt{\gamma}\left[-E \partial_{i} \alpha+F_{k} \partial_{i} \beta^{k}+\frac{\alpha}{2} P^{j k} \partial_{i} \gamma_{j k}+\alpha S^{\alpha}{ }_{i s \alpha}\right],
\end{aligned}
$$

Approximate transport (e.g., moment method)

Assessing instabilities of flavor conversions

Linear stability analysis or
approximate ones

Mixing-scheme with a parametric manner

$$
\begin{aligned}
& L_{\nu_{e}}^{\mathrm{osc}}=\left(1-a_{\mathrm{osc}}\right) L_{\nu_{e}}^{*}+a_{\mathrm{osc}} L_{\nu_{x}} \\
& L_{\bar{\nu}_{e}}^{\mathrm{osc}}=\left(1-b_{\mathrm{osc}}\right) L_{\bar{\nu}_{e}}^{*}+b_{\mathrm{osc}} L_{\bar{\nu}_{x}} .
\end{aligned}
$$

Fernandez et al. 2022

Phenomenological approach: Demonstrations

Jacob et al. 2023

Fernandez et al. 2022
See also Li and Siegel 2021, Just et al. 2022

Phenomenological approach: Uncertainties

\checkmark Degree of flavor mixing can not be determined. It is a parameter in phenomenological models
\checkmark No reliable approximate neutrino transport have been established.
Requirements of quantum closure relations for angular moments
\checkmark Systematic errors are involved due to collision term (neutrino-matter interactions). Non-linear evolution of flavor conversions strongly hinge on collision term See Chinami Kato's talk

These issues can be addressed only by solving quantum kinetic neutrino transport

- Homogeneous Simulations (FFCs)

$$
\varepsilon \frac{d f}{d t}=-p^{\mu} u_{\mu} \stackrel{(-)}{S}_{\mathrm{col}}+i p^{\mu} n_{\mu}[\stackrel{(-)}{H} \stackrel{(-)}{f}]
$$

Johns and H.N et al. 2020

Effects of iso-energetic scatterings on FFC Kato and H.N 2021

But see also Johns and H.N 2021 for consistency issues.

Kato and H.N 2022

- Inhomogeneous Simulations (local)

$$
\frac{\partial f_{a b}}{\partial t}+\underbrace{c \boldsymbol{\Omega} \cdot \nabla f_{a b}}=\mathcal{C}_{a b}-\frac{i}{\hbar}[\mathcal{H}, f]_{a b}
$$

Advection term (flat + cartesian-coordinate)

1D simulation with periodic boundary condition Zaizen and H.N (arXiv:2211.0934)

Asymptotic states in FFCs

See also Bhattacharyya et al. 2021, Wu et al. 2021

- Inhomogeneous Simulations (local)

Asymptotic states of FFC depend on boundary conditions in space.

Nagakura 2022
Lepton number conservation in each flavor of neutrinos accounts for the difference Zaizen and H.N (arXiv:2211.0934)

$H_{E}=\sqrt{2} G_{\mathrm{F}} \int \mathrm{d} \Gamma^{\prime} \rho_{v^{\prime}}$
$H_{F}=\sqrt{2} G_{\mathrm{F}} \int \mathrm{d} \Gamma^{\prime} v_{z}^{\prime} \rho_{v^{\prime}}$.

See Masamichi Zaizen's talk

- Global Simulations: code development

General-relativistic quantum-kinetic neutrino transport (GRQKNT)

\checkmark Fully general relativistic (3+1 formalism) neutrino transport
\checkmark Multi-Dimension (6-dimensional phase space)
\checkmark Neutrino matter interactions (emission, absorption, and scatterings)
\checkmark Neutrino Hamiltonian potential of vacuum, matter, and self-interaction
$\checkmark 3$ flavors + their anti-neutrinos
\checkmark Solving the equation with Sn method (explicit evolution: WENO-5th order)
\checkmark Hybrid OpenMP/MPI parallelization

- Global Simulations: demonstrations Nagakura and Zaizen 2022 (PRL and PRD)

Large-scale (50km - 100km) FFC simulations

$$
\begin{aligned}
& \frac{\partial(-)}{\partial t}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \cos \theta_{\nu} \stackrel{(-)}{f}\right)-\frac{1}{r \sin \theta_{\nu}} \frac{\partial}{\partial \theta_{\nu}}\left(\sin ^{2} \theta_{\nu} \stackrel{(-)}{f}\right) \\
& =-i \xi\left(-\frac{(-)}{H,}, f\right], \quad \text { Attenuating Hamiltonian }
\end{aligned}
$$

See also Xiong et al. arXiv:2210.08254

\checkmark Time-averaged structures are insensitive to attenuation of Hamiltonian.

\checkmark Disappearance of ELN-XLN angular crossings is a key ingredient to characterize asymptotic states of FFC in non-linear phase.

- Global Simulations: Impacts on CCSN explosion

Neutrino heating mechanism

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left[\left(1-\frac{2 M}{r}\right)^{-1 / 2(-)} f^{-}\right]+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left[r^{2} \cos \theta_{\nu}\left(1-\frac{2 M}{r}\right)^{1 / 2(-)} f\right] \\
& -\frac{1}{\nu^{2}} \frac{\partial}{2 \nu}\left[\frac{M}{r^{2}}\left(1-\frac{2 M}{r}\right)^{-1 / 2} \nu^{3} \cos \theta_{\nu}^{(-)} f\right] \\
& -\frac{1}{\sin ^{\prime} \theta_{\nu}} \frac{\partial}{\partial \theta_{\nu}}\left[\sin ^{2} \theta_{\nu} \frac{r-3 M}{r^{2}}\left(1-\frac{2 M}{r}\right)^{-1 / 2(-)} f^{\prime}\right] \\
& =\stackrel{-1}{S}-i \xi[-(-),-(-)],
\end{aligned}
$$

\checkmark Covering a wide post-shock region
V Solving GRQKNT (Schwarzschild spacetimes)
\checkmark Collision terms are taken into account. Neutrino-heating is suppressed by FFCs Neutrino-cooling is accelerated by FFCs

Can we observationally place a constraint on neutrino flavor conversion in CCSNe?
\checkmark
Correlation analysis with gravitational waves is of great use.
Nagakura and Vartanyan in prep

Proto neutron star (PNS) mass is a key ingredient to characterize GW and neutrino signal

Irradiated neutrino energy versus time

Nagakura and Vartanyan 2022, MNRAS

Irradiated GW energy vs. PNS mass

Constraining survival probability of neutrinos from correlation analysis of GWs and neutrino signals

Summary:

\checkmark Neutrino flavor conversion induced by self-interactions is one of the greatest uncertainties in CCSN/BNSM theories.
\checkmark The research field is rapidly evolving owing to both phenomenological and first-principles approaches of quantum kinetic neutrino transport.
\checkmark ELN-XLN crossings characterize not only the FFC instability but also their asymptotic states.
\checkmark Attenuation of Hamiltonian allows us to carry out global simulations.
\checkmark We demonstrate in large-scale QKE simulations that FFCs give large impact on CCSN explosion.
\checkmark The correlation analysis of GWs and neutrinos in realistic theoretical models can break the degeneracy between detection counts and flavor conversion.

