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Multi-physics elements in CCSN and BNSM theories
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Fast neutrino-flavor conversion may ubiquitously occur in
o CCSN and BNSM
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Space-time diagram of ELN-angular crossings in CCSNe
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Vlasenko et al. 2014, Volpe 2015,
Blaschke et al. 2016, Richers et al. 2019

Quantum Kinetic neutrino transport:

Density matrix

Self-interaction

Challenge: Huge disparity in scales between neutrino oscillations and CCSN/BNSM
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Phenomenological approach: Philosophy
Li and Siegel 2021, Just et al. 2022, Fernandez et al. 2022, Jacob et al. 2023

Assessing instabilities of flavor

Radiation-hydrodynamic simulations .
conversions

with classical neutrino transport
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Phenomenological approach: Demonstrations
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Phenomenological approach: Uncertainties

\/ Degree of flavor mixing can not be determined.

It is a parameter in phenomenological models

\/ No reliable approximate neutrino transport have been established.

Requirements of quantum closure relations for angular moments

\/ Systematic errors are involved due to collision term (neutrino-matter interactions).

Non-linear evolution of flavor conversions strongly hinge on collision term

See Chinami Kato’s talk

.

These issues can be addressed only by solving quantum kinetic neutrino transport




- Homogeneous Simulations (FFCs)  Effects of iso-energetic scatterings on FFC

Kato and H.N 2021
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- Inhomogeneous Simulations (local)

Time t=1000

Tlme t= 2000

Advection term (flat + cartesian-coordinate)

1D simulation with periodic boundary condition
Zaizen and H.N (arXiv:2211.0934)
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- Inhomogeneous Simulations (local)

Asymptotic states of FFC depend on boundary conditions in space.
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Lepton number conservation in each flavor of neutrinos accounts for the difference
Zaizen and H.N (arXiv:2211.0934)
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O.Hg See Masamichi Zaizen’s talk
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- Global Simulations: code development
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General-relativistic quantum-kinetic neutrino transport (GRQKNT)
Nagakura 2022
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Fully general relativistic (3+1 formalism) neutrino transport
Multi-Dimension (6-dimensional phase space)

Neutrino matter interactions (emission, absorption, and scatterings)
Neutrino Hamiltonian potential of vacuum, matter, and self-interaction

3 flavors + their anti-neutrinos

Solving the equation with Sn method (explicit evolution: WENO-5th order)

Hybrid OpenMP/MPI parallelization

12



- Global Simulations: demonstrations

Large-scale (50km — 100km) FFC simulations
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- Global Simulations: key takeaways Nagakura and Zaizen 2022 (PRL and PRD)

\/ Time-averaged structures are insensitive to attenuation of Hamiltonian.
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\/ Disappearance of ELN-XLN angular crossings is a key ingredient to characterize
asymptotic states of FFC in non-linear phase.
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- Global Simulations: Impacts on CCSN explosion . .«ura (arxiv:2301.10785)

Neutrino heating mechanism
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\/ Covering a wide post-shock region
\/ Solving GRQKNT (Schwarzschild spacetimes)

\/ Collision terms are taken into account.
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Can we observationally place a constraint on
neutrino flavor conversion in CCSNe?

@

Correlation analysis with gravitational waves is of great use.

Nagakura and Vartanyan in prep
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Proto neutron star (PNS) mass is a key ingredient
to characterize GW and neutrino signal

Irradiated neutrino energy versus time Irradiated GW energy vs. PNS mass
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Nagakura and Vartanyan 2022, MNRAS
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Constraining survival probability of neutrinos
from correlation analysis of GWs and neutrino signals

SK-IBD-p at 10kpc
Tp=4 (s)
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Summary:

Neutrino flavor conversion induced by self-interactions is one of the greatest
uncertainties in CCSN/BNSM theories.

The research field is rapidly evolving owing to both phenomenological and
first-principles approaches of quantum kinetic neutrino transport.

ELN-XLN crossings characterize not only the FFC instability but also their
asymptotic states.

Attenuation of Hamiltonian allows us to carry out global simulations.

We demonstrate in large-scale QKE simulations that FFCs give large impact on
CCSN explosion.

The correlation analysis of GWs and neutrinos in realistic theoretical models
can break the degeneracy between detection counts and flavor conversion.
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