Applications of Machine Learning to Detecting Fast Neutrino Flavor Instabilities

Focus workshop on collective oscillations and chiral transport of neutrinos March 16, 2023

Sajad Abbar Max Planck Institut für Physik (MPP)

Neutrino Oscillations in Dense Media

 Neutrino evolution in dense neutrino media is very different from the one in vacuum and matter

$$i(\partial_t + \mathbf{v} \cdot \nabla)\rho = [H, \rho]$$

$$H = \frac{1}{2} \begin{bmatrix} -\omega \cos 2\theta + \sqrt{2}G_{\mathrm{F}}n_{e} & \omega \sin 2\theta \\ \omega \sin 2\theta & \omega \cos 2\theta - \sqrt{2}G_{\mathrm{F}}n_{e} \end{bmatrix} + H_{\nu\nu}$$

$$\sqrt{2}G_{\mathrm{F}} \int \frac{d^{3}q(1 - \mathbf{v_{P}} \cdot \mathbf{v_{q}})(\tilde{\rho}_{\nu} - \rho_{\bar{\nu}})}{\mathsf{coupling}}$$

$$\mathbf{coupling}$$

Fast Flavor Conversions

- In our traditional understanding, we assumed that neutrinos are emitted isotropically from the surface of the neutrino source
- $f_{\nu_e}(\theta)$ $f_{\bar{\nu}_e}(\theta)$ is either always positive or negative

• This implies that the scales on which flavor conversion could occur are determined by vacuum frequency $\Delta m^2/2E\sim 1~{\rm km}^{-1}$

Fast Flavor Conversions

• FFC could occur when there is crossing in $f_{\nu_e}(\theta)$ – $f_{\bar{\nu}_e}(\theta)$

- Scales on which flavor conversion can occur is now proportional to n_{ν} and could be < 10 cm
- Neutrino oscillations can now occur at densities that had been long thought to be the realm of collisional and scattering processes

Fast Flavor Conversions

 The angular distributions are not available, instead we have only access to their moments

$$I_n = \int d\cos\theta_{\nu} \cos^n\theta_{\nu} f_{\nu}(\cos\theta_{\nu})$$

- In M1 closure scheme only the evolution of zeroth and first moments are followed directly
- We can still make progress! Dasgupta+2018; Abbar2020; Johns+2021; Richers2022;
- But these methods are normally inefficient and very slow
- FFC can not be detected on the fly

• Question: Given I_0 and I_1 , do ELN crossings exist?

- Question: Given I_0 and I_1 , do ELN crossings exist?
- Machine learning can help us
- We have four feature here: I_0 and I_1 for neutrinos and antineitrnonos

• For training, we use analytical maximum-entropy and gaussian distributions $f_{\nu}(\cos\theta_{\nu}) = \exp(-\eta + a\cos\theta_{\nu})$

$$f_{\nu}(\cos\theta_{\nu}) = \exp[-a(1-\cos\theta_{\nu})^2 + b]$$

• For training, we use analytical maximum-entropy and gaussian distributions $f_{\nu}(\cos\theta_{\nu}) = \exp(-\eta + a\cos\theta_{\nu})$

$$f_{\nu}(\cos\theta_{\nu}) = \exp[-a(1-\cos\theta_{\nu})^2 + b]$$

• We have four feature here: I_0 and I_1 for neutrinos and antineutrinos (one is redundant) $\alpha = \frac{I_0^{\bar{\nu}_e}}{I_0^{\nu_e}} \quad F_{\nu} = \frac{I_1}{I_0}$

• For training, we use analytical maximum-entropy and gaussian distributions $f_{\nu}(\cos\theta_{\nu}) = \exp(-\eta + a\cos\theta_{\nu})$

$$f_{\nu}(\cos\theta_{\nu}) = \exp[-a(1-\cos\theta_{\nu})^2 + b]$$

• We have four feature here: I_0 and I_1 for neutrinos and antineutrinos (one is redundant) $I_0^{\bar{\nu}_e} \qquad I_1$

 $lpha = rac{I_0^c}{I_0^{
u_e}} \quad F_
u = rac{I_0^c}{I_0^c}$

Abbar (2023)

 Based on finding a line that separates the data points, in which a logistic function is applied on the top of the linear one so that one can decide on the basis of some final values which are in (0,1)

http://www.elusives.eu

one should first make non-linear transformations

$$x, y \rightarrow x, y, x^2, y^2$$

Abu Mostafa

one should first make non-linear transformations

$$x, y \rightarrow x, y, x^2, y^2$$

• In our problem, maximum accuracy is reached for n = 9

Abbar (2023)

 In order to overcome the overfitting, one needs at least a few thousand points

LR performs well on NSM remnant simulation data

Just+2022

LR performs well on NSM remnant simulation data

• Another justification for using parametric angular distributions

LR performs well on NSM remnant simulation data

Calculations with n = 3 also perform relatively well

emia Sinica, March 16, 2023

• All our ML algorithms can reach good accuracies

\mathbf{Log}	istic Regression (9	93%)	
	precision	recall	F_1 -score
no crossing	83%	93%	88%
crossing	97%	93%	95%
]	KNN (n=3) (95%)		
	precision	recall	F_1 -score
no crossing	90%	90%	90%
crossing	96%	96%	96%
	$\mathbf{SVM}\ (95\%)$		
	precision	recall	F_1 -score
no crossing	92%	90%	91%
crossing	96%	97%	97%
Ι	Decision tree (94%))	
	precision	recall	F_1 -score
no crossing	89%	88%	89%
crossing	96%	96%	96%

Abbar (2023)

Future Directions

- Improve the ML algorithms with more realistic data
- Three-flavor effects: muon creation
- Machine learning methods prove to be very promising regarding the detection of FFI

Summary

Machine learning is fascinating!

KNN

• KNN is one of the simplest forms of machine learning algorithms mostly used for classification. It classifies the data point on how its neighbor is classified.

townrdsdatascience.com

Decision Tree

In decision tree, one makes decision using a tree-like structure.
 At each node, one of the features is selected and the branching occurs.

SVM

 Support Vector Machine is a classification based on finding a line that classifies the data points, maximises the margins

