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Variety of collective oscillation studies
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Variety of collective oscillation studies
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Flavor conversions & matter collisions

v/ Collisions change neutrino distribution functions

= ox) ELN crossing, the difference between v, and v,

v Nonlinear interplay between flavor conversions &
matter collisions

= Change nonlinear asymptotic states

v Collision-induced flavor instability (CFI)

unstable modes induced by matter collisions



Neutrinos in SNe

v/ dominant reactions
*V,, V,, : charged current emis/abs
"V,, Ve : Neutral current scatterings
v/ the position of neutrino sphere

Electron flavor (v, and v,)

Thermal Equilibrium

Neutrino sphere

Free
streaming

Energy sphere Transport sphere

Other flavors (v, vy, V¢, Vy)

Diffusion
Janka 2017




Multi-energy treatment

Considering the interplay between flavor conversions &
matter collisions....

v Neutrinos have energy spectrum
v/ Reaction rates are energy-dependent
= The multi-energy treatment is natural !

at 100ms Ex) proton scattering

nsc (rec)
nsc (Bruenn)
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Our standing and talk outline

Our motivation

Comprehensively understand the interplay
between flavor conversions and matter collisions
under simplified conditions

Outline
v/ Brief introduction of our QKE-MC solver

v/ Studies on isoenergetic scatterings (FFC)
v/ Studies on charged-current emis/abs (FFC & CFls)
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FFC with Neutral current scattering  ck+2022
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v/ reaction rates are independent of flavors

v/ isoenergetic and isotropic scattering e.g., nucleon scattering
energy dependent rate: R(E,) = RyE?

v FFC-enhanced case

v no heavy leptonic (anti-)neutrinos
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v/low rate: more vigorous ——
and longer-lived FFCs

v/ collisions spread
conversions to wider angles
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Multi-energy results

v two neutrino energies (Ej,,=10MeV, Ep;;,=30MeV)
v flat energy spectrum

v/ Energy dependent reaction rate R(E,) = RyE?

The average reaction rates are fixed to the single-HR case

o R(Elow)nlow + R(Ehigh)nhigh

(Ree) =

Ny

v Energy dependence of
reaction rate reduces the
impact of collisions
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Angular distribution

v high energy neutrinos experience collisions more
frequently

= detailed balance is achieved between two angles
= the number of scatterings is effectively reduced
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Energy dependent FFC

v/ The survival probabilities depend on v energy |
= collisions induce energy-dependence in FFC dynamics

Solid: Eju
Dashed: Ehigh
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FFC, CFl with emis/abs CK+2023 inprep

v/ Physically motivated numerical setup (SN ~50km at 100ms)
v/ Spectral crossing between v, and v, at E=25MeV

— 1,
S 7
—— U Uy
---- FD for v,
--FD for v, |

Angular distribution/cm?




Single-energy results
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v/ FFC timescale ~10712s
<< collision timescale ~10~°s

= FFC & collision driven
phases
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v'v,: reduction by FFC

= thermalization by
collisions

v/ more vigorous but short-
lived FFCs
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Linear stability analysis

v Unstable modes in FFC & collision driven phases
= FFC driven phase: FFC mode
collision driven phase: CFl mode

v/ After the sufficient attenuation of FFCs, CFls occur weak
flavor conversions — 1= 0s  iosxis

model wp/lem™'] ~/[em™"] w,/[em™']  ~/[em™]
PTR-Bwo 0.150  2.11 x 10‘? - |
PTR-B 0.150 212x10°2 272 212x10°°

C driven phas s{collision dri

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
wy[cm™1]



Multi-energy structures: energy-dependent FFC

v/ FFCs eliminate difference
between v, & v,

v/ larger difference between
V, & V, in higher energy

= [arger conversion
v Energy-dependent FFCs

Energy spectrum/cm3/MeV

Normalized neutrino numbers per energy bin

E, = HMeV
E, = 25MeV
E, = 45MeV
E, = 65MeV

E, = 85MeV

= 5.MeV

= 20MeV

v = 45MeV

65MeV

85MeV
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Multi-energy results
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v/ Large number of low
energy neutrinos

1.2 x 10%

1.1 x 10

= Hamiltonian potential
is determined by them

1 x 1033

9 x 1042

8 x 1032

number density/cm

= weak matter damping
= [ong-lived FFCs
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Angular distributions
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Picture of local matter heating

v/ high-energy v,, ™ v, by FFCs
= v, are thermalized by absorption
= |ocal matter heating

v’ v, are replenished by advection
Ty, W

> >

FFC Thermalization & advection *



Summary

v To comprehensively understand the interplay between
flavor conversions & matter collisions
v/ Dominant reactions in SNe
= nucleon scatterings / charged-current emis*abs
v Multi-energetic treatment is natural in realistic situation

v Collisions quantitatively change the nonlinear dynamics
= |n our models, more vigorous and short-lived FFCs

v/ Collisions make FFCs energy-dependent

v/ In multi-energy treatment, low energy neutrinos drive

oscillations and flavor conversions become longer-lived.
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