Focused workshop on collective oscillations and chiral transport of neutrinos @ Taiwan

Multi-energy handling of fast flavor conversions with matter collisions

Chinami Kato(TUS)

CK, Nagakura and Morinaga, ApJS, 257,55, 2021 CK & Nagakura, PRD, 106, 123012, 2022 CK, Nagakura and Zaizen, inprep, 2023

Variety of collective oscillation studies

Variety of collective oscillation studies

Flavor conversions & matter collisions

✓ Collisions change neutrino distribution functions → ex) ELN crossing, the difference between v_e and v_x

✓ Nonlinear interplay between flavor conversions & matter collisions

Change nonlinear asymptotic states

 ✓ Collision-induced flavor instability (CFI) unstable modes induced by matter collisions

Neutrinos in SNe

✓ dominant reactions
 •v_e, v

 _e: charged current emis/abs
 •v_x, v

 _x: neutral current scatterings
 ✓ the position of neutrino sphere

Multi-energy treatment

Considering the interplay between flavor conversions & matter collisions....

✓ Neutrinos have energy spectrum
 ✓ Reaction rates are energy-dependent
 ➡ The multi-energy treatment is natural !

at 100ms

Ex) proton scattering

Our standing and talk outline

Our motivation

Comprehensively understand the interplay between flavor conversions and matter collisions under simplified conditions

<u>Outline</u>

✓ Brief introduction of our QKE-MC solver
 ✓ Studies on isoenergetic scatterings (FFC)
 ✓ Studies on charged-current emis/abs (FFC & CFIs)

QKE-MC solver

Advantage of MC
 simple and direct manner of reactions
 cross checking

n step

Evolution of sample particles

Solving geodesic equation Calculating neutrino reactions

Calculation of $H_{\nu\nu}$

Summing up MC samples

Evolution of ho_s , $ar{
ho}_s$

Solving QKE for each sample particle

FFC with Neutral current scattering CK+2022

$$i\frac{\partial\rho_a(E_{\nu},\cos\theta_{\nu},t)}{\partial t}$$

= $[\mathcal{H}_{\nu\nu},\rho_a(E_{\nu},\cos\theta_{\nu},t)]$
+ $i\int_{-1}^1 d\cos\theta'_{\nu}R(E_{\nu})\rho_a(E_{\nu},\cos\theta'_{\nu},t)$
- $i\int_{-1}^1 d\cos\theta'_{\nu}R(E_{\nu})\rho_a(E_{\nu},\cos\theta_{\nu},t)$

✓ reaction rates are independent of flavors
 ✓ isoenergetic and isotropic scattering e.g., nucleon scattering energy dependent rate : R(E_v) = R₀E²_v
 ✓ FFC-enhanced case
 ✓ no heavy leptonic (anti-)neutrinos

Single-energy results

 Iow rate: more vigorous and longer-lived FFCs
 collisions spread conversions to wider angles

 $1.25 \times 10^{-5} \mathrm{~cm^{-1}}$

Multi-energy results

✓ two neutrino energies (E_{low} =10MeV, E_{high} =30MeV) ✓ flat energy spectrum ✓ Energy dependent reaction rate $R(E_{\nu}) = R_0 E_{\nu}^2$

The average reaction rates are fixed to the single-HR case

$$\langle R_{ee} \rangle = \frac{R(E_{\text{low}})n_{\text{low}} + R(E_{\text{high}})n_{\text{high}}}{n_{\nu}}$$

✓ Energy dependence of reaction rate reduces the impact of collisions

Angular distribution

 ✓ high energy neutrinos experience collisions more frequently

detailed balance is achieved between two angles
 the number of scatterings is effectively reduced

Energy dependent FFC

✓ The survival probabilities depend on v energy !
 ➡ collisions induce energy-dependence in FFC dynamics

FFC, CFI with emis/abs

CK+2023 inprep

$$i\frac{\partial\rho_{a}}{\partial t} = \begin{bmatrix}\mathcal{H}_{\nu\nu},\rho_{a}\end{bmatrix} + i\begin{pmatrix}2\pi R_{e} - \begin{bmatrix}R_{e} + R_{a}\end{bmatrix}\rho_{ee,a} & -\frac{1}{2}\begin{bmatrix}R_{e} + R_{a}\end{bmatrix}\rho_{ex,a}\\ -\frac{1}{2}\begin{bmatrix}R_{e} + R_{a}\end{bmatrix}\rho_{xe,a} & 0\end{pmatrix}$$
$$i\frac{\partial\bar{\rho}_{a}}{\partial t} = \begin{bmatrix}\bar{\mathcal{H}}_{\nu\nu},\bar{\rho}_{a}\end{bmatrix} + i\begin{pmatrix}2\pi\bar{R}_{e} - \begin{bmatrix}\bar{R}_{e} + \bar{R}_{a}\end{bmatrix}\bar{\rho}_{ee,a} & -\frac{1}{2}\begin{bmatrix}\bar{R}_{e} + \bar{R}_{a}\end{bmatrix}\bar{\rho}_{ex,a}\\ -\frac{1}{2}\begin{bmatrix}\bar{R}_{e} + \bar{R}_{a}\end{bmatrix}\bar{\rho}_{xe,a} & 0\end{pmatrix}$$

✓ Physically motivated numerical setup (SN \sim 50km at 100ms) ✓ Spectral crossing between v_e and v_x at E=25MeV

Single-energy results

✓ FFC timescale ~10⁻¹²s
 < collision timescale ~10⁻⁶s
 → FFC & collision driven phases

✓ ν_e : reduction by FFC → thermalization by collisions

 ✓ more vigorous but shortlived FFCs

Linear stability analysis

✓ Unstable modes in FFC & collision driven phases
 ➡ FFC driven phase: FFC mode
 collision driven phase: CFI mode
 ✓ After the sufficient attenuation of FFCs, CFIs occur weak
 flavor conversions

	t = 0 s		$t = 8 \times 10^{-6} \text{ s}$	
model	$\omega_p/[\mathrm{cm}^{-1}]$	$\gamma/[\mathrm{cm}^{-1}]$	$\omega_p/[\mathrm{cm}^{-1}]$	$\gamma/[\mathrm{cm}^{-1}]$
PTR-Bwo	0.150	2.11×10^{-2}	-	-
PTR-B	0.150	2.12×10^{-2}	2.72	2.12×10^{-6}

Multi-energy structures: energy-dependent FFC ✓ FFCs eliminate difference between $v_e \& v_x$ Normalized neutrino numbers per energy bin 10^{1} ✓ larger difference between ν_e $v_e \& v_x$ in higher energy \rightarrow larger conversion ✓ Energy-dependent FFCs 10^{0}

Multi-energy results

 Large number of low energy neutrinos
 Hamiltonian potential is determined by them
 weak matter damping
 long-lived FFCs

Picture of local matter heating

✓ high-energy v_x → v_e by FFCs
 → v_e are thermalized by absorption
 → local matter heating
 ✓ v_x are replenished by advection
 → v_x → v_e

.

Thermalization & advection²⁰

Summary

 To comprehensively understand the interplay between flavor conversions & matter collisions
 Dominant reactions in SNe
 nucleon scatterings / charged-current emis•abs
 Multi-energetic treatment is natural in realistic situation

Collisions quantitatively change the nonlinear dynamics
 In our models, more vigorous and short-lived FFCs
 Collisions make FFCs energy-dependent
 In multi-energy treatment, low energy neutrinos drive oscillations and flavor conversions become longer-lived.