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Fast Flavor Conversion

Crossing
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p
2GF

Z
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[(f⌫e � f⌫̄e)� (f⌫x � f⌫̄x)]

= ELN － XLN
(Electron Lepton Number) (Heavy-leptonic one)

𝝂𝒆 excess
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= cos ✓⌫
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``Fast flavor conversions’’ (FFC)
- Short scale of ~ (GF nν)-1 ≲ O(cm) or O(ns).  << stellar scale-height
- Triggered by ``angular crossings’’ in neutrino lepton number.

Neutrino-flavor lepton number (NFLN) angular distribution.

If 𝝂𝒙 = $𝝂𝒙 , it is reduced to be only ELN.
(reasonable in CCSNe)
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Asymptotic Behaviors

Break periodicity.
Asymptotic behaviors.

Matter-induced
decoherence.

Cascade due to 
advection term.

(Quasi-)periodic oscillation
Fast pendulum
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C[⇢⌫ , ⇢̄⌫ ]

In terms of the difference vectors and their counterpart
sum vectors Sl ¼ Pl þ P̄l, the multipole equations of
motion are [62]

_Sl ¼ μD0 × Sl −
μ
2
D1 × ðalSl−1 þ blSlþ1Þ;

_Dl ¼ μD0 ×Dl −
μ
2
D1 × ðalDl−1 þ blDlþ1Þ; ð2Þ

where al ¼ 2l=ð2lþ 1Þ and bl ¼ 2ðlþ 1Þ=ð2lþ 1Þ. D0 is
constant on μ−1 timescales, implying that fast collective
modes must be driven by D1. It is helpful at this point to
switch to a frame rotating about D̂0 at frequency μD0,
where D0 ¼ jD0j. Using primes to denote vectors in the
rotating frame and introducing L0 ¼ ðD0

0 þ 2D0
2Þ=3 and

G0 ¼ 2D0
3=5, we then have

_D0
1 ¼ μL0 × D0

1;

_D0
2 ¼

3

2
μG0 ×D0

1: ð3Þ

Computing D0
1 × D̈0

1 leads to a pendulum equation, which
can be written in a form comparable to that of the bipolar
pendulum [Eq. (39) of Ref. [13] ] by defining δ0 ¼ D0

1=D1

and σ ¼ δ0 ·L0. The result is

δ0 × δ̈0

μ
þ σ _δ0 ¼ μD1G0 × δ0: ð4Þ

One critical distinction with respect to the bipolar pendu-
lum is that in this case “gravity” is not a fixed external
potential. In fact, G0 couples directly to D0

1, making this a
sort of nonlinear gyroscopic pendulum. Nevertheless, the
possibility for collective pendulum motion is built into the
structure of Eq. (2). Numerical realizations of it are shown
in Figs. 1 and 2.
The dynamics of the system is also restricted by a tower

of conservation laws, which can be constructed by differ-
entiating D0

1 ·D
0
l and recursively reducing the right-hand

side until it is expressed as a total derivative. The first three
conserved quantities are D1, σ, and

ED ¼ μG0 ·D1
0 þ μ

2
L02; ð5Þ

which respectively denote the length of the pendulum, its
spin, and its total energy. In a foundational study, Raffelt
and Sigl [62] showed that the dipole term is the driving
force behind kinematic decoherence. This remains true on
short timescales, and it is clear from Eq. (1) that D1 causes
dephasing of neutrinos with different values of v. But the
constraints on the motion of D1 mean that the dephasing
can give rise to persistent collective oscillations rather than
effectively irreversible relaxation, at least until the effects of
finite ω become important. The additional fact that some of
these constraints involve only the first four angular

moments gives us some hope of capturing the important
features of FFC without having fine-grained information
about the distributions in momentum space. Indeed, the
higher conservation laws, which encode the fact that all
angular moments are dynamically linked, may have utility
for closing the moment hierarchy in a sensible way.
We can be more specific about the connection to

kinematic decoherence by recalling that S0 obeys a
pendulum equation as well [13,62,68,69], with energy

ES ¼ ωB · S0 þ
μ
2
ðD2

0 − D2
1Þ: ð6Þ

Kinematic decoherence arises because D2
0 and D2

1 are able
to evolve at the cost of S0 shrinking [62]. But if μ ≫ ω,
then the S0 pendulum generally has very little sway over
the D1 pendulum. The opposite is not true, however: D1

steers the evolution of S0. Relaxation occurs through the
mutual interaction of the two pendula; the fact that the
influence is one way in the ω → 0 limit enables sustained
collective motion.

FIG. 1. Angular coordinates over four periods of fast flavor
conversion. Two values of v ¼ cos θ are shown in each panel.
The one that experiences more significant flavor conversion is
distinguished by the use of darker shades: purple for cos θv, blue
for sin ðϕv − ϕ1Þ. The thick black curve depicts cos θ1. Time is in
units of ½

ffiffiffi
2

p
GFðnνe − nν̄eÞ&

−1 ∼ 14 ps (154 ps) for the upper
(lower) panel. See the text for discussion and Fig. 2 for more
information on the choice of parameters.
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A. Nonlinear flavor evolution

Recently, it has been pointed out that nonforward colli-
sions may enhance as well as suppress fast pairwise mixing
[29–31]. Before we proceed, we would like to clarify what
we mean by enhancement of flavor mixing. We consider the
enhancement of the asymptotic conversion probability with
respect to the maximal conversion probability encountered
when collisions are absent. This convention has the advan-
tage of being independent of the initial condition (taking, for
example, the average conversion probability over timewould
introduce a significant dependence on the plateaus between
conversions and hence on the size of the initial perturbation).
In addition, we wish to be conservative in claiming enhance-
ment; hence, using the maximal conversion allows to achieve
this goal. The mechanism responsible for the suppression is
explained by two effects. First, frequent incoherent oscil-
lations destroy coherence; second, the incoherent collisions
tend to smear out the ELN crossings necessary for flavor
conversion to occur [16]. As we demonstrate in this section,
the enhancement can also be understood by relying on
similar arguments.
The full collision term, C in Eq. (2), is computationally

expensive to evaluate. In the spirit of simplicity, we adopt
the approximation used in Ref. [29], which only focused on
direction changing collisions. For neutrinos, the following
collision term is added to Eq. (5)

C
2

!X

j

PðujÞΔuj − 2PðuiÞ
"
: ð21Þ

A similar expression for the collision term holds for
antineutrinos, and it is also valid in the rotating frame.

We use the scripted C in Eq. (2) to denote the collision term
and the unscripted C to denote the parameter that encap-
sulates the strength of the collision term.
The left panel of Fig. 3 shows the conversion probability

for case A as a function of the distance. A clear enhance-
ment of flavor conversion is visible for moderate values of
C. Note that, comparing the solution with C ¼ 1 km−1 to
the results of Fig. 2 of Ref. [29], our results are in good
qualitative agreement, but quantitatively they are not
directly comparable because of the three bin model adopted
in this paper. For larger values of C, the enhancement of
flavor conversion occurs on shorter timescales; for
C≳ 4.5 km−1, flavor conversion is suppressed.
On the contrary, there is no enhancement of flavor

conversion for case B shown in the right panel of
Fig. 3. For this configuration, even the lowest value of
C gives a suppression of the initial flavor conversion
probability; as C is gradually increased to 30 km−1, the
asymptotic value of the conversion probability decreases
gradually. As C increases, the conversion probability
reaches a steady configuration at smaller distances.
In order to investigate the origin of the opposite

effect of collisions on the survival probability for cases
A and B, we show in the Fig. 4 the conversion probability
in each of the three angular bins for cases A (left) and B
(right):

PexðuiÞ ¼
1

2

#
1 −

PzðuiÞ
P0ðuiÞ

$
; ð22Þ

where P0ðuiÞ as a function of time is given by

FIG. 3. Fast flavor conversion for the three bin neutrino model for cases A (left panel) and B (right panel) in the presence of collisions.
The conversion probability is shown for C ¼ 1, 3, and 10 km−1 for case A and C ¼ 1, 3, 10 and 30 km−1 for case B. For both
configurations, the no-collision case (C ¼ 0 km−1) is plotted in gray to guide the eye. For case A, intermediate values of C lead to an
enhancement of flavor conversion and larger values of C are responsible for suppressing flavor conversion. On the other hand, all
configurations with C ≠ 0 show a suppression of flavor conversion for case B.
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simulations fluctuate about Psurv ≈ 0.82. By this time, the
different simulations are in very different microscopic
realizations of the same macroscopic state as a result of
the randomized initial conditions.
Figure 2 shows the spatial average of the flavor vector

components at t ¼ 5000μ−1. The top panel shows the
magnitude of the flavor-coherent (i.e., transverse) compo-
nents of the polarization vector. The small values indicate
that by this point the flavor-coherent components of the
polarization vectors at different locations largely cancel
each other because of a persisting wavelike pattern in space
(see below). The bottom panel shows that the polarization
vectors have settled to a well-defined flavor distribution to
the left of the crossing (vertical dashed line). To the right
of the crossing, the neutrinos are fluctuating just below
hP3i ¼ 0, or complete flavor mixing. All of this is in good
agreement with Refs. [50,53].
The Fourier spectrum of the distribution also shows

excellent agreement throughout the simulation. We com-
pute the number-weighted, direction-averaged power spec-
trum given by

hS̃ðt; kÞi ¼
Z

1

−1
gðuÞdu

Z
L

0
e−ikzSðt; z; uÞdz: ð11Þ

The power spectrum of the initial perturbation common to
all simulations and described in Eq. (7) is apparent in the
dotted curves in Fig. 3. The solid curves show the power
spectrum at the end of the simulation (t ¼ 5000μ−1). By
this point, the unstable modes have already grown and
saturated. Even at this late time, all methods show excellent
agreement. The horizontal bands in both the initial and final
spectra are a result of numerical errors, and the Zaizen code
shows the smallest error in this metric. As suggested in
Ref. [53] (for different choices of neutrino distribution), the
resulting power spectrum is static, with exponential tails
away from the peak. The peak of the equilibrium spectrum
is not at k ¼ 0, reflecting the presence of a long-lived
coherent wavelike pattern in the spatial distribution of the
polarization vectors, as demonstrated by Ref. [42] and
observed in the TwoThirds simulation of Ref. [54].
This coherent wave structure is not apparent in the upper
panel of Fig. 2, because the data there are spatially
integrated over many periods, yielding a number close
to 0. Although the exponential tails seem to be a robust
feature of these simulations, we still lack a satisfactory
explanation for them.

FIG. 1. Domain-integrated survival property (top panel) and
transition probability (bottom panel) as a function of time. The
initial perturbations grow exponentially until the instability
saturates at t ≈ 1300μ−1. All simulations show the same insta-
bility growth rate, saturation time, saturation amplitude, and late-
time equilibrium.

FIG. 2. Space-integrated polarization vector components as a
function of direction at t ¼ 5000μ−1. The vertical dashed line at
u ¼ 0.786 shows the location of the ELN crossing in the initial
distribution. All simulations agree on the distribution of neutrino
flavor to the left of the crossing and show near complete mixing
to the right of the crossing. All simulations agree on the
magnitude of the flavor off-diagonal components at the end of
the simulation.
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Homogeneous FFC
w/o collisions
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Stability of FFC
Governing equation for the off-diagonal components.

Convolution between sv & Sv
in nonlinear regime.

Main obstacles
in fully nonlinear stability analysis.

Assumptions:
- |S| <<  s ~ 1.
- Ignore mode couplings.

= Linearization
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Stability of FFC
Governing equation for the off-diagonal components.

Spatial- or time-averaged sv(t,x) .
Capture the overall trends of 
・nonlinear saturation
・quasi-steady state

3

while

ivµ@µsE,v =
!V

2
sin 2✓V

�
S
⇤
E,v � SE,v

�

+
1

2
S
⇤
E,v v

µ

Z
d�0

v
0
µ gE0,v0SE0,v0

�
1

2
SE,v v

µ

Z
d�0

v
0
µ gE0,v0S

⇤
E0,v0 (6)

is the equation for s (the diagonal component). In the
expression, !V and ✓V denote a vacuum frequency and
a mixing angle, respectively. It should be stressed that
any approximations are not imposed in deriving Eqs. (5)
and (6) from QKE.

Below, let us prepare the stability analysis in the non-
linear phase. In the linear regime (under the choice of
fixed points as flavor eigenstates), the diagonal term is

given by s =
q
1� |S|

2
' 1, which can be directly in-

serted to Eq. (5), and then we can obtain the disper-
sion relation for S with the plane wave ansatz. In the
non-linear regime, however, s would substantially devi-
ate from unity, and more importantly, it depends on time
and space, which causes mode couplings (in other words,
we need to compute the convolutions of S with s). It
should also be mentioned that the stability needs to be
determined globally, if the background component is not
uniform. These are main obstacles to deriving dispersion
relation for S in the non-linear regime.

In our prescription, we drop the mode coupling by as-
suming that s is constant (but not unity). One may
choose s as that at (t,x), i.e., the space-time location
where the stability analysis is conducted. Another pre-
scription is to adopt the spacial- or time-averaged quan-
tity. In fact, we are interested in the overall trend of non-
linear saturation and quasi-steady state of flavor conver-
sion, which can be characterized by those averaged dis-
tributions. In the following, we leave the notation as s,
but need to keep in mind this assumption.

We adopt the plane wave ansatz to S,

SE,v(t,x) / QE,v(⌦,K) e�i(⌦t�K·x)
, (7)

and then the governing equation for SE,v can be recast
into

v
µ
kµQE,v = �!VQE,v � sE,v v

µ

Z
d�0

v
0
µ gE0,v0QE0,v0 ,

(8)

where kµ ⌘ (!,k) = Kµ � ⇤ex
µ � �ex

µ with ⇤ex
⌘ ⇤11

�

⇤22 and �ex
µ =

R
d� vµ gE,vsE,v. In a co-rotating frame

where the vacuum term oscillates quickly and the o↵-
diagonal terms are averaged to zero by the matter term,
the mixing angle ✓V can be set to zero. As a result,
the nontrivial solutions for QE,v are given by, using the
metric ⌘ = diag(+,�,�,�),

D(!,k) ⌘ det [⇧µ⌫(k)] = 0, (9)

where

⇧µ⌫ = ⌘
µ⌫ +

Z
d� gE,vsE,v

v
µ
v
⌫

v�k� + !V
. (10)

We note that !V dependence accounts for the slow flavor
conversion. It may be useful to rewrite Eq. (10) as

⇧µ⌫ = ⌘
µ⌫ +

Z
d� g

ex
E,v(t,x)

v
µ
v
⌫

v�k� + !V
, (11)

where

g
ex
E,v(t,x) = (Pee g

e
E,v + Pxe g

x
E,v)� (Pex g

e
E,v + Pxx g

x
E,v)

= (Pee � Pex) gE,v

= gE,v sE,v(t,x). (12)

In the expression, we use the relation of Pex = (1 �

sE,v)/2, where P↵� is defined as a transition probabil-
ity from ↵-type flavor at the initial state to �-type one
at t. If there is a nonzero imaginary part in kµ, the flavor
instability SE,v can grow or dump in space and time.
FFC can be driven only by the neutrino self-

interactions, and we can ignore the vacuum term. In the
fast limit, !V = 0, the density matrix loses the explicit
energy-dependence in the QKE, and therefore Eq. (11)
can be more concisely rewritten. We define an ↵-flavor
lepton number (↵LN) angular distribution

G
↵
v =

p

2GF

Z 1

0

dE E
2

2⇡2
[f⌫↵(E,v)� f⌫̄↵(E,v)] (13)

and the di↵erence G
↵�
v ⌘ G

↵
v � G

�
v between ↵ and �

flavors. The dispersion relation only for fast instability
is reduced to

D(!,k) ⌘ det [⇧µ⌫(k)] = 0, (14)

where

⇧µ⌫ = ⌘
µ⌫ +

Z
dv

4⇡
G

ex
v (t,x)

v
µ
v
⌫

v�k�
. (15)

For the stability with respect to the spatial- or time-
averaged distributions, we use the averaged quantity of
G

ex
v (t,x) in Eq. (15).
A few remarks should be made here. The dispersion

relation is essentially the same as that used in linear
stability analysis. In fact, the growth (or damp) of S

is determined solely by the diagonal components of the
density matrix. Based on the same argument made by
Ref. [29], the stability can be determined by the presence
of ELN-XLN crossings even in the non-linear phase2, sug-
gesting that ELN-XLN angular distributions are funda-
mental quantities to characterize the dynamics of flavor

2
However, a homogeneous mode can be stable even if there exists

ELN-XLN crossing. This is simply because unstable solutions

possibly appear only in inhomogeneous modes. Nevertheless,

ELN-XLN angular distributions are key quantities to character-

ize the stability of FFC.

Characterize a nonlinear saturation:
- Absence of 

ELN-XLN spectral crossings.
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conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘

�����

Z

Gex
v <0

dv

4⇡
G

ex
v

����� (20)
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When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.

4

conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘
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When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =
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p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.

Angular-
integration

Quantum Kinetic Equation:

Flux term

For Dirichlet boundary.

Injecting & escaping components 
from inner/outer boundary.
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conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘
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When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.

Conservative form:

7

Spatial-
integration

Spatial-integration

For periodic boundary.

ELN & XLN.

More generally need to evaluate the flux term.

Conservation law:
<latexit sha1_base64="mtoLi9KC0FdU3Lfg33qUb6PsA4k="></latexit>
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Asymptotic Behaviors

Key ingredients to characterize a quasi-steady state at a 
nonlinear saturation:

1. Stability
- Disappearance of spectral crossing (in averaged-domain)

= Establishment of flavor equipartition

2. Boundary constraints for ELN (XLN)
- Conservation laws in periodic case
- Compensates for flavor equipartition in one side.

FFC proceeds mainly in the shallow side of ELN angular 
distributions and works to eliminate the crossings.

Predictable
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ELN Model

Crossing

ELN angular distribution, G4b

Crossing

Initially, pure electron state. 
XLN is zero.

<latexit sha1_base64="QK8+V6EHHGLqQXaOkLx1LVU3asI="></latexit>

i(@t + vz@z)⇢ = [H, ⇢]

QKE:
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Flavor Simulation

<latexit sha1_base64="wc2bK4murcJvtueMgWOzMKVLbWg="></latexit>⇢ex
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⇢ee =
1

2
(1 + P3)

Time evolution of neutrino density matrix for each component.

Zaizen & Nagakura ‘22
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Spatial Structure

Flavor evolution
Generate smaller-scale 
structure in time.

As the overall trend,
• FFC occurs only within a 

crossing.
• FFC reaches nonlinear 

saturation at t ~ 2000.

Shallower side

Zaizen & Nagakura ‘22
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Spatial-Averaged Structure

No Crossing in ELN-XLN !!

ELN still has a crossing.

Angular dist. at final state.

Absence of Angular Crossing
in ELN-XLN

Establishment of
quasi-steady state of FFC

Stability at a nonlinear saturation:

Zaizen & Nagakura ‘22



Spatial-averaged ELN-XLN.
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Spatial-Averaged Structure

Quasi-steady

Disappearance of crossing

Nonlinear saturation

Time evolution

Crossing

FFC works to eliminate the crossings.

<latexit sha1_base64="EDJ1ahjFf5kGhaLcmgs9Zoem4CA="></latexit>

hPeei

Zaizen & Nagakura ‘22



Time-averaged ELN-XLN.
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Time-Averaged Structure

Disappearance of crossing

Nonlinear saturation

Crossing

FFC works to eliminate the crossings.

Quasi-steady

<latexit sha1_base64="EDJ1ahjFf5kGhaLcmgs9Zoem4CA="></latexit>

hPeei

Time-average

Zaizen & Nagakura ‘22
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Modeling of Asymptotic State

50%
Flavor equipartition

4

conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘
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Gex
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dv
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When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.
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conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as
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When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.
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p = 1/2 (for 2 flavor case)

For B > A

Asymptotic behaviors:
1. Stability

- Disappearance of crossing
2. Conservation of ELN (XLN)

- Periodic boundary

Zaizen & Nagakura ‘22

Simplest model
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Asymptotic Behaviors

Stability

Key ingredients to characterize a quasi-steady state at a 
nonlinear saturation:

1. Stability
- Disappearance of spectral crossing (in averaged-domain)

= Establishment of flavor equipartition

2. Boundary constraints for ELN (XLN)
- Conservation laws in periodic case
- In the shallower side, more converted.

Zaizen & Nagakura ‘22
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Asymptotic Behaviors

Key ingredients to characterize a quasi-steady state at a 
nonlinear saturation:

1. Stability
- Disappearance of spectral crossing (in averaged-domain)

= Establishment of flavor equipartition

2. Boundary constraints for ELN (XLN)
- Conservation laws in periodic case

Other boundary conditions?
e.g., Dirichlet case?
→ Different asymptotic states
c.f., Nagakura & Zaizen ‘22

Effects of collisions?
→ Collision-dominated phase.
c.f., Kato & Nagakura ‘22
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Stability w/ Collisions

FFC + Scatterings (homogeneous)

FFC establishes asymptotic states through 
matter-induced decoherence.
After FFC ceases, scatterings only isotropize the 
angular distributions.

FFC-driven & Collision-dominated phase.

Kato & Nagakura ‘22L = ELN-XLN angular distributions.
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FIG. 2. Angular distributions of L (top) and gee (bottom) for E1 models. From the left panels, we show the results of E1 noscat,
E1 HR and E1 LR models, respectively. Different colors denote different timesteps.

our results presented in this section is consistent with
previous studies [45, 47, 49]. In the following subsections,
we turn our attention to multi-energy effects of collisions
on FFCs, which is the subject of this paper.

B. Energy-dependent collisions: flat
neutrino-energy spectrum

Here, we discuss multi-energy effects of collisions on
FFCs with comparing to the case of energy-independent
collisions presented in Section III A. For the sake of sim-
plicity, neutrino energies are assumed to be Elow =
10 MeV or Ehigh = 30 MeV. We refer to the models as E2.
In this section, we consider the case with flat neutrino-
energy spectrum, i.e., nlow = nhigh = nν/2 where nlow

and nhigh denote the numbers of neutrinos with the en-
ergy of Elow and Ehigh, respectively. We note that the
case of non-flat energy spectrum will be discussed in the
next subsection.
The angular distributions of neutrinos are set to be

identical to those used in previous subsection (see Eqs. 7).
This guarantees that the neutrino self-interaction poten-
tial at the beginning of simulation is identical among all
models. We assume that the reaction rate is proportional
to E2

ν emulating the energy dependence of neutral current
scatterings (see Eqs. 3 and 4). To discuss multi-energy
effects of collisions appropriately, we set the reaction rate
so that the energy-integrated rate becomes the same as
that of E1 HR model. More specifically, we determine

R0 with a condition that the energy-averaged reaction
rate for νe,

〈Ree〉 =
R(Elow)nlow +R(Ehigh)nhigh

nν

, (9)

becomes RHR = 1.25 × 10−4 cm−1, which corresponds
to the reaction rate used in E1 HR model. The re-
sultant reaction rates at the energy of Elow and Ehigh

are R(Elow) = 2.50 × 10−5 cm−1 and R(Ehigh) =
2.25× 10−4 cm−1, respectively, and the correspond R0 is
10−4 cm−1. We name this model as a E2 HR model.
The time evolution of nx in E2 HR model is depicted

with a coral line in Figure 1(b). In the early phase, the
time evolution of nx in E2 HR model is almost identical
to that of E1 HR model. After the time of t ∼ 10−7 s,
differences between the two models become perceptible.
The growth rate of nx in E2 HR model becomes smaller
than E1 HR model, whereas the saturation amplitude
of nx becomes higher. We have already witnessed the
same trend when we compared the time evolution of nx

between E1 HR and E1 LR models (see Section III A).
Following the same argument, our result suggests that
the frequency of collisions in E2 HR model is reduced by
multi-energy effects.
By comparing between the bottom-middle panel of

Figure 2 and the left-top panel of Figure 4 (displaying gee
and ḡee as a function of neutrinos directional cosines in
momentum space), the trend of weak collisions of E2 HR
model can also be seen. The isotropization of νe is slower
in E2 HR model than E1 HR model; consequently the δ
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FIG. 2. Angular distributions of L (top) and gee (bottom) for E1 models. From the left panels, we show the results of E1 noscat,
E1 HR and E1 LR models, respectively. Different colors denote different timesteps.

our results presented in this section is consistent with
previous studies [45, 47, 49]. In the following subsections,
we turn our attention to multi-energy effects of collisions
on FFCs, which is the subject of this paper.

B. Energy-dependent collisions: flat
neutrino-energy spectrum

Here, we discuss multi-energy effects of collisions on
FFCs with comparing to the case of energy-independent
collisions presented in Section III A. For the sake of sim-
plicity, neutrino energies are assumed to be Elow =
10 MeV or Ehigh = 30 MeV. We refer to the models as E2.
In this section, we consider the case with flat neutrino-
energy spectrum, i.e., nlow = nhigh = nν/2 where nlow

and nhigh denote the numbers of neutrinos with the en-
ergy of Elow and Ehigh, respectively. We note that the
case of non-flat energy spectrum will be discussed in the
next subsection.
The angular distributions of neutrinos are set to be

identical to those used in previous subsection (see Eqs. 7).
This guarantees that the neutrino self-interaction poten-
tial at the beginning of simulation is identical among all
models. We assume that the reaction rate is proportional
to E2

ν emulating the energy dependence of neutral current
scatterings (see Eqs. 3 and 4). To discuss multi-energy
effects of collisions appropriately, we set the reaction rate
so that the energy-integrated rate becomes the same as
that of E1 HR model. More specifically, we determine

R0 with a condition that the energy-averaged reaction
rate for νe,

〈Ree〉 =
R(Elow)nlow +R(Ehigh)nhigh

nν

, (9)

becomes RHR = 1.25 × 10−4 cm−1, which corresponds
to the reaction rate used in E1 HR model. The re-
sultant reaction rates at the energy of Elow and Ehigh

are R(Elow) = 2.50 × 10−5 cm−1 and R(Ehigh) =
2.25× 10−4 cm−1, respectively, and the correspond R0 is
10−4 cm−1. We name this model as a E2 HR model.
The time evolution of nx in E2 HR model is depicted

with a coral line in Figure 1(b). In the early phase, the
time evolution of nx in E2 HR model is almost identical
to that of E1 HR model. After the time of t ∼ 10−7 s,
differences between the two models become perceptible.
The growth rate of nx in E2 HR model becomes smaller
than E1 HR model, whereas the saturation amplitude
of nx becomes higher. We have already witnessed the
same trend when we compared the time evolution of nx

between E1 HR and E1 LR models (see Section III A).
Following the same argument, our result suggests that
the frequency of collisions in E2 HR model is reduced by
multi-energy effects.
By comparing between the bottom-middle panel of

Figure 2 and the left-top panel of Figure 4 (displaying gee
and ḡee as a function of neutrinos directional cosines in
momentum space), the trend of weak collisions of E2 HR
model can also be seen. The isotropization of νe is slower
in E2 HR model than E1 HR model; consequently the δ

Isotropize

(Quasi-)steady state

FFC



19

Boundary Constraints for Dirichlet

Dirichlet:

Much locally, same as periodic at early phase.

Reaches different quasi-steady states.

10

FIG. 8. Same as the top panels of Fig. 2 (color map of fxx/(fee + fxx) as functions of radius and cos ✓⌫) but for GL-↵09 (top)
and GL-↵11 (bottom). We note that the ELN crossing angle in these models is di↵erent from that in GL-Ref; hence the dashed
line on each panel is not identical to that displayed in Fig. 2.
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FIG. 9. Same as Fig. 3 but for LO-↵09 model. We note that the ELN crossing point is located at 11/18, which is displayed
with a dashed line in each panel.

boundary reaches there. The di↵erence between the two
models can be interpreted by linear stability analysis. As
shown in Fig. 7, the eigenvector which has the maximum
growth rate is very di↵erent from each other. In LO-↵09,
the eigenvector has the sharper forward-peaking angular
profile than that in LO-Ref, that accounts for the earlier
development of FFCs in the region of cos ✓⌫ >⇠ cos ✓⌫(c).
On the other hand, one thing we do notice here is that
the strong flavor conversion at cos ✓⌫ <⇠ cos ✓⌫(c) in the
quasi-steady state is universal among models, which is
a key feature to develop an approximate scheme of FFC

(see Sec. V).

Next, we consider the �̄ee-dependence of FFCs. As we
have already mentioned in Sec. III, �̄ee represents the
depth of ELN crossing; the smaller �̄ee has the shallower
crossing. As shown in Fig. 10, we find that strong fla-
vor conversion occurs even in very small �̄ee. One of the
noticeable findings is that the angular distribution of neu-
trinos are almost identical between GL-Ref, GL-�̄01⇠-3,
and GL-�̄001⇠-2. This property can be understood as
follows. First, the shape of ELN angular distribution is
identical among these models. More specifically, the only

Nagakura & Zaizen ‘22

Similar to periodic case. Different quasi-steady state.

4

conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘

�����

Z

Gex
v <0

dv

4⇡
G

ex
v

����� (20)

B ⌘

�����

Z

Gex
v >0

dv

4⇡
G

ex
v

����� . (21)

When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.

Conservative form:



20

Boundary Constraints for Dirichlet
Nagakura & Zaizen ‘22

Time-averaged transition prob.

nearly Flavor Equipartition

Dirichlet:

Spatial-average is inadequate.
→ Time-average during quasi-steady states.

ELN-XLN becomes negative in all directions.
(positive in periodic case.)

Small-scale fluctuations 
are smoothed.

ELN-XLN

4

conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘

�����

Z

Gex
v <0

dv

4⇡
G

ex
v

����� (20)

B ⌘

�����

Z

Gex
v >0

dv

4⇡
G

ex
v

����� . (21)

When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.

Conservative form:
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Time-averaged transition prob.

and we find that the system eventually achieves a quasis-
teady state. One of the striking results in this Letter is that
the degree of flavor conversion does not hinge on nν in the
quasisteady phase. This trend is more visible in time-
averaged distributions. We compute the time-averaged f by
integrating over the time of 0.3 ms ≤ t ≤ 0.5 ms; the
results are shown in the right panels of Fig. 1. Figure 2
also displays the radial profiles of the time-averaged
number density of νe and the ratio of nνx to nνe þ nνx in
the left and right panel, respectively, for all models (for
model-Γ8, we compute the time-averaged f in the time
range of 0.06 ms ≤ t ≤ 0.12 ms). Both figures illustrate
that the degree of flavor mixing is universal. It should also
be mentioned that the angular resolutions in our simula-
tions do not compromise the time-averaged profile (see the
red dashed line in Fig. 2 displaying the result of model-
Γ1h). The result of model-Γ8, that corresponds to the
model with the highest spatial resolution and the modest Γ,
also strengthens our conclusion. As shown in Fig. 2, the
results of other models clearly approach to model-Γ8 with
increasing nν. This lends confidence to our claim that the
case of Γ ¼ 1 (no reduction of nν) can be studied from
these results.
Temporal and spatial variations of FFC are vigorous even

after the system reaches a quasisteady state, indicating that
the system never achieves the exact steady state. On the other

hand, these fluctuations become mild with increasing radius
(see the region of 80 km≲ r≲ 100 km in Fig. 1). In the
sense of classical neutrino transport, this feature is at odds,
because temporal variations generated at the inner region can
be sustained in the free-streaming region. The suppression of
inhomogeneity is, hence, dictated by quantum effects. Since
neutrinos propagating along different trajectories have ran-
dom temporal variations, these variations can cancel each
other through self-interactions. We note that this is different
from so-called “kinematic decoherence” (see, e.g., Ref. [1]),
albeit with a similar mechanism. In fact, the vacuum
oscillation has nothing to do with them, and more impor-
tantly, the flavor equipartition has been almost achieved at
the inner region. Our result suggests that temporal variations
of FFC occurring in the deep inner core would be smeared
out during the flight in the free streaming region.
Finally, we analyze angular distributions of neutrinos in

the quasisteady state, which provides new insight into
understanding the nonlinear saturation of FFC. In this
analysis, we pay special attention to angular distributions of
the electron neutrino lepton number (ELN) and XLN
(heavy neutrino lepton number). We find that the time-
averaged ELN angular distribution subtracted by that of the
XLN (hereafter, we refer to it as ELN-XLN angular
distribution) is a key quantity. As shown in the right panel
of Fig. 3, ELN-XLN angular crossings, which exist at the
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FIG. 1. All plots show fxx=ðfee þ fxxÞ as functions of radius and cos θν. Top and bottom panels show results of model-Γ1 and model-
Γ4, respectively. The left and middle panels display the result at t ¼ 0.1 ms and 0.5 ms, respectively. The right panels depict time-
averaged distributions in a quasisteady state phase (0.3 ms ≤ t ≤ 0.5 ms). The black solid and dashed lines represent trajectories of
neutrinos emitted in the direction of cos θν ¼ 0 (perpendicular to the radial direction) and cos θν ¼ 0.5 (ELN crossing point),
respectively, at the inner boundary (50 km).
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inner boundary, disappear at large radii, whereas ELN
crossings still remain (see left panel of Fig. 3). Our result
suggests that FFC evolves towards eliminating ELN-XLN
angular crossings in the linear phase, and then the growth of
FFC is saturated when the ELN-XLN crossing vanishes.
Although we postpone a detailed study of the mechanism
[28], our interpretation is supported by a linear analysis. As
is well known, ELN crossing is a good indicator of the
occurrence of FFC. However, this is true only if heavy
leptonic neutrinos and antipartners are zero or they have the
same angular distributions as each other. In the nonlinear
regime of FFC, heavy leptonic neutrinos and their anti-
partners substantially emerge with different angular dis-
tributions. Hence, their contribution needs to be taken into
account. Since the traceless part of the density matrix is

proportional to ðfee − f̄eeÞ − ðfxx − f̄xxÞ in a two flavor
system (see, e.g., Ref. [29]), ELN-XLN crossings are more
natural quantities to characterize the stability of FFC than
the ELN ones.
Conclusions.—This Letter presents large-scale (50 km)

simulations of FFC in spherical symmetry by using
GRQKNT code [26]. We make simulations tractable by
reducing the neutrino number density (nν) at the inner
sphere. By running multiple simulations with changing the
reduction rate of nν, we can study temporal- and quasis-
teady features of FFC on a > 10 km spatial scale. One
striking result found in this Letter is that the time-averaged
distributions of FFC are less sensitive to nν. We also find
that the fluctuations are smoothed out at the outer radii as
a consequence of phase cancellation through neutrino

FIG. 2. Radial profiles of time-averaged neutrino number density in a quasisteady state. In the left panel, we show nνe normalized by
that at 50 km. For comparison, the result without FFC is also shown as a black solid line. In the right panel, we display nνx=ðnνe þ nνxÞ,
which corresponds to a useful metric to see the degree of flavor conversion.
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FIG. 3. Time-averaged angular distributions of the ELN (left) and ELN-XLN (right) at different radii for model-Γ4. Time average is
taken in 0.3 ms ≤ t ≤ 0.5 ms. The vertical scale is normalized so that fELN in the direction of cos θν ¼ 0 at r ¼ 50 km becomes unity.
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Disappearance of 
ELN-XLN angular crossings
in both local / global case.

Local Global
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Summary

Key ingredients to characterize a quasi-steady state at a 
nonlinear saturation:

1. Stability
- Disappearance of spectral crossing (in averaged-domain)

(In FFC case, absence of angular crossings.)
- Collisions are distinguished from FFC-stability.

2. Boundary Constraints for ELN (XLN)
- In periodic,  conservation laws.
- In Dirichlet, different quasi-steady state.

- Need to evaluate the flux term.

4

conversion. On the other hand, our method ignores the
mode couplings with the inhomogeneity of ELN-XLN an-
gular distributions. We will validate this condition by
numerical simulations (see Sec. III).

B. Conservation laws

In the fast limit, the QKE can be decomposed into
commutators with the neutrino density HE and the flux
HF as

i(@t + vz@z)⇢v = [H⌫⌫ , ⇢v]

= [HE , ⇢v]� [vzHF , ⇢v] , (16)

where

HE =
p

2GF

Z
d�0

⇢v0 (17)

HF =
p

2GF

Z
d�0

v
0
z⇢v0 . (18)

Moreover, integrating the QKE over the phase space, we
can obtain

@tHE + @zHF = 0, (19)

which has a conservative form without source terms.
Note that the neutrino density is not locally conserved
due to the advection (flux) term. Both ELN and XLN
are conserved in terms of spatially integrated quantity
because the neutrino flux on the boundary surface is
closed in the periodic case. Therefore, flavor conversion
proceeds with satisfying the ELN and XLN conservation
and eventually reaches a non-linear saturation. In other
words, FFC transfers the number density from the posi-
tive (negative) part to the negative (positive) and satu-
rates when the angular distributions are wholly positive
(negative) or zero. These properties o↵er a simple an-
alytic prescription to determine an asymptotic state of
FFC, which will be discussed in the next subsection.

Here, let us make an important remark. The spatial-
integrated HE is, in general, not conserved if another
boundary condition is imposed. This implies that the
system evolves towards a di↵erent asymptotic state; in
fact we observed that the system settled into a qualita-
tively di↵erent quasi-steady state for the Dirichlet bound-
ary condition, see Refs. [79, 80].

C. Asymptotic states

From the above discussion, we can predict the asymp-
totic states from two requirements: the disappearance of
ELN-XLN angular crossings and the conservation of ELN
and XLN. The disappearance of ELN-XLN angular cross-
ings is equivalent to the achievement of flavor equipar-
tition in some angular regions, which is determined as

follows3. If the total number density,
R
dv (ELN�XLN),

is positive, flavor conversion proceeds until the achieve-
ment of flavor equipartition on the angular parts with
negative lepton number. In the other angular part, the
ELN and XLN are adjusted so as to satisfy the num-
ber conservation of ELN and XLN. If the total number
density is negative, flavor equipartition is achieved on
the positive part, and then the conservation of ELN and
XLN is adjusted in the negative one. Note that if the to-
tal number density of ELN-XLN is zero, complete flavor
equipartition is established in the entire angular distri-
bution, which is consistent with the result in [62].
Following the above consideration, we develop an ap-

proximate scheme. The negative ELN-XLN part A and
positive one B are defined as

A ⌘

�����

Z

Gex
v <0

dv

4⇡
G

ex
v

����� (20)

B ⌘

�����

Z

Gex
v >0

dv

4⇡
G

ex
v

����� . (21)

When the total number density of ELN-XLN is positive,
B � A > 0, the number density corresponding to A/2
is transferred from the ELN to the XLN in the negative
ELN-XLN directions to establish a flavor equipartition.
On the other hand, the same amount of number density
is converted from the positive ELN-XLN parts to sustain
the conservation for ELN (and XLN). Consequently, in
the positive part, the number density A/2 is subtracted
from the positive number density B and distributed into
the XLN. Thereby, the survival probability of electron-
type neutrinos can be analytically estimated as the fol-
lowing simple box-like formulas:

Pee =

8
<

:
p for Gv < 0

1� (1� p)
A

B
for Gv > 0

, (22)

where p is a survival probability in the negative ELN-
XLN part and becomes p = peq, where peq represents the
survival probability for flavor equipartition, to eliminate
the ELN-XLN crossing. Note that peq is 1/2 for two-
flavor of neutrinos (see below for the case with a three-
flavor framework). For the negative case, B � A < 0,
considering the opposite, we obtain

Pee =

8
<

:
p for Gv > 0

1� (1� p)
B

A
for Gv < 0

. (23)

In the symmetric flavor case A = B, our analytical
scheme provides full flavor equipartition in the entire an-
gular directions. Note that within a three-flavor frame-
work, we need to consider flavor equipartitions on both

3
In this study, we assume that there is a single ELN-XLN crossing

in initial angular profiles. The study of multiple ELN crossings is

currently underway and will be reported in a forthcoming paper.

Conservative form:

<latexit sha1_base64="ZqQ7p5lfSy8no88JSVCf0MeUNgU="></latexit>

⇧µ⌫ = ⌘µ⌫ +

Z
d3p

(2⇡)3
hgp(t, x)i

vµv⌫

v�k� + !V + i�ex

Nonlinear saturation:


