

Fast Neutrino Flavor Conversion in CCSN: A Parametric Study in 1D

Jakob Ehring (MPP/MPA)

with Georg Raffelt (MPP) H.-Thomas Janka (MPA) Sajad Abbar (MPP) Irene Tamborra (NBIA) Robert Glas (MPA)

arxiv:2301.11938

Focus Workshop, Taipei 14th - 17th March 2023

Overview

•What this talk is not about

- •What we did instead
- •Results from simulations in spherical symmetry
- Summary and outlook

Neutrino FFC in CCSN Focus Workshop, Taipei

What this talk is not about

Given

$$(\partial_t + \vec{v} \cdot \overrightarrow{\nabla_x}) \rho = -i[H, \rho] + \mathscr{C}[f]$$

Find a solution for ho , where

$$H = H_{\nu\nu} = \mu \int d\vec{p'} [\rho(\vec{p'}) - \overline{\rho}(\vec{p'})](1 - \vec{v} \cdot \vec{v'})$$

Neutrino FFC in CCSN Focus Workshop, Taipei See the other talks of the workshop

Or see a review e.g. Duan et al (2010), Mirizzi et al (2016), Tamborra et al (2021), Richers and Sen (2021), Volpe (2023)

What we did instead

Ask the question: How "wrong" are we, neglecting fast and efficient neutrino flavor conversion in Core-Collapse Supernovae simulations?

Neutrino FFC in CCSN Focus Workshop, Taipei

What we did instead

- "Quick & Dirty" method to include Flavor Conversion
- Maximum equilibrium (up to conservation laws)
- 1 parameter conversion criterion

Neutrino FFC in CCSN Focus Workshop, Taipei

Basics principles:

No creation or destruction of particles -> Conservation of Total Lepton Number

$$\sum_{\alpha} n_{\nu_{\alpha}} + \sum_{\alpha} n_{\bar{\nu}_{\alpha}} = \sum_{\alpha} n_{\nu_{\alpha}}' + \sum_{\alpha} n_{\bar{\nu}_{\alpha}}'$$

Pairwise (neutrino+antineutrino) -> Conservation of Electron Lepton Number

$$L_e = n_{\nu_e} - n_{\bar{\nu_e}} = n'_{\nu_e} - n'_{\bar{\nu_e}} = L'_e$$

Neutrino FFC in CCSN Focus Workshop, Taipei

Parametrized Recipe:

Neutrino FFC in CCSN Focus Workshop, Taipei

$$n'_{\nu_e} = n_{eq} + \max(0, L_e),$$

$$n'_{\overline{\nu_e}} = n_{eq} + \max(0, -L_e),$$

$$n'_{\nu_x} = n_{eq}$$

$$n_{\text{equ}} = \begin{cases} \frac{1}{3}(n_{\bar{\nu}_e} + 2n_{\nu_x}) & \text{if } L_e \ge 0, \\ \frac{1}{3}(n_{\nu_e} + 2n_{\nu_x}) & \text{if } L_e < 0, \end{cases}$$

Criterion For Occurrence:

Should be comparably inexpensive -> Needs to be done "on the fly"

Use density to probe effects of FFC in different regions:

- Inside Heating Region ($\rho_{\rm crit} = 10^{10} \, {\rm g/cm^3}$) (A)
- Inside Neutron Star Mantle ($\rho_{\rm crit} = 10^{12} \, {\rm g/cm^3}$) (B)
- Inside Neutron Star Core ($\rho_{crit} = 10^{13} \text{ g/cm}^3$) (C)

Neutrino FFC in CCSN Focus Workshop, Taipei

Results from simulations in spherical symmetry

Neutrino FFC in CCSN Focus Workshop, Taipei

Mean Energy

Neutrino FFC in CCSN Focus Workshop, Taipei

Neutrino Luminosity

Neutrino FFC in CCSN Focus Workshop, Taipei

Summary and Outlook

- Strong Flavor Conversions can have significant impact dynamical evolution in 1D
- Flavor conversions cause
 - Enhanced heating in gain region

 - Enhanced cooling in cooling region and PNS mantle - Reduced energy transport in PNS core
- Many more possibilities to charter effects: Multi-D effects, couple to ELN crossings, "incomplete" conversions, nucleosynthesis, different progenitor, neutrino signals, later onset, ...

Neutrino FFC in CCSN Focus Workshop, Taipei

