Theory of Fast Flavor Conversion of Supernova Neutrinos : Linear and Nonlinear Analysis

Soumya Bhattacharyya ${ }^{\text {1,2 }} 2$
March 11, 2022

1
Department of Theoretical Physics, TIFR soumyaquanta@gmail.com

Content of The Talk

- A Brief Review
- Our Motivation
- Our Numerical Techniques
- Results for Nonlinear Analysis
- Results for Linear Analysis

Works Done

Non-Linear Analysis:

- Late-time Behavior of Fast Neutrino Oscillations (Phys.Rev.D 102 (2020) 6, 063018)
- Fast Flavor Depolarization of Supernova Neutrinos (Phys.Rev.Lett. 126 (2021) 6, 061302)
- Elaborating the Depolarization of Fast Collective Neutrino Flavor Oscillations (Manuscript in Preparation)

Linear Analysis:

- Fast Flavor Oscillations of Astrophysical Neutrinos with 1, 2, ..., ∞ Crossings (JCAP 07 (2021) 023)

A Brief Review

Neutrinos from SN : A Brief Review

Flavor Conversion of SN Neutrinos

Ensemble of neutrinos \rightarrow density matrix $\rightarrow \rho_{\vec{p}}[\vec{x}, t] \rightarrow\left(\begin{array}{cc}\rho_{\vec{p}}^{e e} & \rho_{\vec{p}}^{e x} \\ \rho_{\vec{p}}^{x e} & \rho_{\vec{p}}^{x x}\end{array}\right)$
Survival Probability

Flavor Conversion

$$
\begin{gathered}
\left(\partial_{t}+\vec{p} \cdot \nabla_{\vec{x}}\right) \rho_{\vec{p}}= \pm \underbrace{\left.\omega\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \rho_{\vec{p}}\right]}_{\text {Vacuum Oscillations }}+\lambda\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \rho_{\vec{p}}\right]+\mu \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}}\left(1-\cos \theta_{\vec{p} \vec{q}}\right)\left[\rho_{\vec{q}}-\bar{\rho}_{\vec{q}}, \rho_{\vec{p}}\right] \\
\omega=\frac{\delta m^{2}}{4 E}
\end{gathered}
$$

Flavor Conversion of SN Neutrinos

Ensemble of neutrinos \rightarrow density matrix $\rightarrow \rho_{\vec{p}}[\vec{x}, t] \rightarrow\left(\begin{array}{cc}\rho_{\vec{p}}^{e e} & \rho_{\vec{p}}^{e x} \\ \rho_{\vec{p}}^{x e} & \rho_{\vec{p}}^{x x}\end{array}\right)$

Survival Probability

Flavor Conversion

$$
\left(\partial_{t}+\vec{p} \cdot \nabla_{\vec{x}}\right) \rho_{\vec{p}}= \pm \omega\left[\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \rho_{\vec{p}}\right]+\lambda\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \rho_{\vec{p}}\right]+\mu \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}}\left(1-\cos \theta_{\vec{p} \vec{q}}\left[\rho_{\vec{q}}-\bar{\rho}_{\vec{q}}, \rho_{\vec{p}}\right]\right.
$$

Matter Effects

$$
\lambda=\sqrt{2} G_{F} n_{e}
$$

Flavor Conversion of SN Neutrinos

Ensemble of neutrinos \rightarrow density matrix $\rightarrow \rho_{\vec{p}}[\vec{x}, t] \rightarrow\left(\begin{array}{cc}\rho_{\vec{p}}^{e e} & \rho_{\vec{p}}^{e x} \\ \rho_{\vec{p}}^{x e} & \rho_{\vec{p}}^{x x}\end{array}\right)$
Survival Probability

Flavor Conversion

$\left(\partial_{t}+\vec{p} \cdot \nabla_{\vec{x}}\right) \rho_{\vec{p}}= \pm \omega\left[\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right), \rho_{\vec{p}}\right]+\lambda\left[\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right), \rho_{\vec{p}}\right]+\mu \underbrace{\frac{d^{3} \vec{q}}{(2 \pi)^{3}}\left(1-\cos \theta_{\vec{p} \vec{q}}\right)\left[\rho_{\vec{q}}-\bar{\rho}_{\vec{q}}, \rho_{\vec{p}}\right]}$
Neutrino Self-interaction

$$
\mu=\sqrt{2} G_{F} n_{\nu}
$$

Neutrinos IAntineutrinos forward scatter with each other

Neutrinos IAntineutrinos forward scatter with each other

Neutrinos IAntineutrinos forward scatter with each other

> Neutrinos IAntineutrinos forward scatter with electrons
forward scatter
with electrons

Neutrinos IAntineutrinos freely propagate in vacuum

Neutrinos trapped
$\mathrm{R} \sim 10 \mathrm{~km}$ Fast Flavor Conversion $\sim \mu$

Fast Flavor Conversion : A Review

- Independent of mass hierarchy : E plays no role

Fast Flavor Conversion : A Review

- Independent of mass hierarchy : E plays no role
- Rapid conversion
$\left|\rho^{e x}\right| \propto e^{\mu t}$

Fast Flavor Conversion : A Review

- Independent of mass hierarchy: E plays no role
- Rapid conversion

$$
\left|\rho^{e x}\right| \propto e^{\mu t}
$$

- Requires "zero" crossing

Fast Flavor Conversion : A Review

$$
\left.\begin{array}{c}
\rho_{\vec{p}}=\frac{\operatorname{Tr}\left[\rho_{\vec{p}}\right]}{2} \mathbb{I}_{2 \times 2}+\frac{g_{\omega, \vec{p}}}{2} \mathrm{~S} \cdot \sigma \\
\omega, \lambda \ll \mu
\end{array} \partial_{t}+\vec{v} . \vec{\nabla}\right) \mathrm{S}_{\vec{v}}=\mu \int d^{3} \vec{v}^{\prime} G_{\vec{v}^{\prime}}\left(1-\vec{v} \cdot \vec{v}^{\prime}\right) \mathrm{S}_{\vec{v}^{\prime}} \times \mathrm{S}_{\vec{v}} \quad G_{\vec{v}}=\int d \omega g_{\omega, \vec{v}} \longrightarrow \text { "Zero" Crossing in } \mathbf{v} \text { er }
$$

Fast Flavor Conversion : A Review

$$
\left.\begin{array}{c}
\rho_{\vec{p}}=\frac{\operatorname{Tr}\left[\rho_{\vec{p}}\right]}{2} \mathbb{I}_{2 \times 2}+\frac{g_{\omega, \vec{p}}}{2} \mathrm{~S} \cdot \sigma \\
\omega, \lambda \ll \mu
\end{array} \partial_{t}+\vec{v} . \vec{\nabla}\right) \mathrm{S}_{\vec{v}}=\mu \int d^{3} \vec{v}^{\prime} G_{\vec{v}^{\prime}}\left(1-\vec{v} \cdot \vec{v}^{\prime}\right) \mathrm{S}_{\vec{v}^{\prime}} \times \mathrm{S}_{\vec{v}} \quad G_{\vec{v}}=\int d \omega g_{\omega, \vec{v}} \longrightarrow \text { "Zero" Crossing in } \mathbf{v}
$$

Huge Phase space : 3 space +3 momentum +1 time

Coupled Nonlinear P.D.E : Previous attempts

Linear stability analysis

$$
S^{\|} \approx 1
$$

Phys. Rev. D 96 (2017)043016

Coupled Nonlinear P.D.E : Previous attempts

Linear stability analysis

$$
S^{\|} \approx 1
$$

Phys. Rev. D 96 (2017)043016

Coupled Nonlinear P.D.E : Previous attempts

Nonlinear analysis

$$
S^{H} \approx 1
$$

Phys. Rev. Lett. 118 (2017) 021101
Phys. Rev. D 96 (2017)043016

Huge Phase Space : Previous attempts

Stationary

B.Dasgupta, A.Mirizzi and M.Sen

 JCAP 2017 (2017) 019$$
\left(\partial_{t}+\vec{v} \cdot \vec{\nabla}\right) \mathrm{S}_{\vec{v}}=\mu \int d^{3} \vec{v}^{\prime} G_{\vec{v}^{\prime}}\left(1-\vec{v} \cdot \vec{v}^{\prime}\right) \mathrm{S}_{\vec{v}^{\prime}} \times \mathrm{S}_{\vec{v}}
$$

Lack of temporal information !!

Huge Phase Space : Previous attempts

B.Dasgupta, A.Mirizzi and M.Sen JCAP 2017 (2017) 019
B.Dasgupta and M.Sen

Phys.Rev.D 97 (2018)023017
S.Chakraborty, R.S Hansen, I.Izaguirre and G.Raffelt

Homogeneous

$$
\left(\partial_{t}+\vec{v} \cdot \vec{\nabla}\right) \mathrm{S}_{\vec{v}}=\mu \int d^{3} \vec{v} G_{\vec{v}^{\prime}}\left(1-\vec{v} \cdot \vec{v}^{\prime}\right) \mathrm{S}_{\vec{v}^{\prime}} \times \mathrm{S}_{\vec{v}}
$$

Lack of Spatial information !!

Huge Phase Space : Previous attempts

B.Dasgupta, A.Mirizzi and M.Sen Phys. Rev. D 98 (2018) 103001

$$
\frac{\left(\frac{\partial_{t}}{1+1+1 \mathrm{D}}\right.}{\left.\frac{\vec{v}}{\mathrm{v}} \cdot \vec{\nabla}\right) \mathrm{S}_{\vec{v}}}=\mu \int \frac{d^{3} \vec{v}}{} G_{\vec{v}^{\prime}}\left(1-\vec{v} \cdot \vec{v}^{\prime}\right) \mathrm{S}_{\vec{v}^{\prime}} \times \mathrm{S}_{\vec{v}}
$$

Magnitude of neutrino velocity not fixed to unity !!

Our Motivation

Our Motivation

Phys.Rev.D 102 (2020) 6, 063018
Phys.Rev.Lett. 126 (2021) 6, 061302
+1 in preparation

- Theory of FFC in nonlinear regime

Phase space (Linear analysis)

JCAP 07 (2021) 023

- Dependence on angular distribution

Dispersion relation solver

Our Motivation

Phys.Rev.D 102 (2020) 6, 063018
Phys.Rev.Lett. 126 (2021) 6, 061302
+1 in preparation

- Theory of FFC in nonlinear regime

Phase space (Linear analysis)

JCAP 07 (2021) 023
Final neutrino signal

$$
x-y \quad v_{x}^{2}+v_{y}^{2}=1
$$

$\mathbf{2}$ space +2 vel + 1 time 1 vel

- Dependence on angular distribution

Dispersion relation solver

Numerical Techniques

P.D.E Solver

Dispersion relation solver

Results:

 Jonlinear Analysis
Nonlinear Analysis : Toy Model

Phase Space : 1 space + 1 vel +1 time dimension $\quad\left(\partial_{t}+v \partial_{x}\right) \mathrm{S}_{v}=\mu \int_{-1}^{1} d v^{\prime} G_{v^{\prime}}\left(1-v v^{\prime}\right) \mathrm{S}_{v^{\prime}} \times \mathrm{S}_{v}$
Neutrino angular distribution :

$$
\begin{gathered}
\int_{-1}^{1} G_{v} d v=A \\
0<A<1 \\
-1<v_{c}<1
\end{gathered}
$$

Linear

Initial Condition :

Nonlinear Analysis : Toy Model

Phase Space : 1 space + 1 vel + 1 time dimension
$v=\cos \theta$

1 dimensional box of lenght L with periodic boundary conditions
Neutrinos emitted from each point in the box with velocity $v=\cos \theta$
ELN distribution : $\quad G_{v}=\sqrt{2} G_{F} \int_{0}^{\infty} \frac{d E E^{2}}{2 \pi^{2}}\left[f_{\nu_{e}}(E, v)-f_{\bar{\nu}_{e}}(E, v)\right]$
Solve this equation : $\quad\left(\partial_{t}+v \partial_{x}\right) \mathrm{S}_{v}=\mu \int_{-1}^{1} d v^{\prime} G_{v^{\prime}}\left(1-v v^{\prime}\right) \mathrm{S}_{v^{\prime}} \times \mathrm{S}_{v}$

Nonlinear Analysis : Toy Model

Phase Space : 1 space + 1 vel + 1 time dimension

$$
v=\cos \theta
$$

$$
\int_{-1}^{1} d v G_{v}=A
$$

G_{v} as a function of \mathbf{v} crossing v_{c}

lenght L with periodic boundary co
rom each point in the box with veld
Vary $v_{c} A$

External perturbation
S^{\perp}

$$
\measuredangle \sqrt{2} G_{F} \int_{0}^{\infty} \frac{d E E^{2}}{2 \pi^{2}}\left[f_{\nu_{e}}(E, v)-f_{\bar{\nu}_{e}}(E, v)\right]
$$

4
Solve this equation : $\quad\left(\partial_{t}+v \partial_{z}\right) \mathrm{S}_{v}=\mu \int_{-1}^{1} d v^{\prime} G_{v^{\prime}}\left(1-v v^{\prime}\right) \mathrm{S}_{v^{\prime}} \times \mathrm{S}_{v}$

Nonlinear Analysis : Nature of nonlinear solution

- System shows irreversibility (steady state) in time
- The bloch vector shows tendency to flip over

Nonlinear Analysis : Nature of nonlinear solution

- Length of the bloch vector shrinks when spatially averaged
- Final solution shows flavor depolarization depending on the nature of v and A
- $\mathbf{A}=\mathbf{0} \longrightarrow$ Full flavor depolarization for all $\mathbf{v} \longrightarrow \mathrm{S}_{v}=0 \forall v$
- $A \neq 0 \longrightarrow$ Partial flavor depolarization and the range of fully flavor depolarized modes depend on size and sign of A

Nonlinear Analysis : Nature of nonlinear solution

- The phase relationship between the transverse components of the bloch vector becomes randomized all over the space independent of the nature of v and A at late times

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Main physics aspects governing late-time nonlinear behaviour :

- Multipole cascade
- Irreversible pendulum motion (for low n multipoles)
- Transverse relaxation
- Spatial coarse-graining

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Multipole Diffusion :

Georg G. Raffelt and Günter Sigl Phys. Rev. D 75, 083002

Bhattacharyya and Dasgupta (2020) Phys.Rev.Lett. 126 (2021) 6, 061302
a) Multipole space

Set of coupled nonlinear P.D.E
b) Spatial coarse-graining

$$
\mathrm{M}_{n}=\int_{-1}^{1} d v G_{v} L_{n}[v] \mathrm{S}_{v}
$$

c) Periodic bondary condition

$$
\partial_{t}\left\langle M_{n}\right\rangle=\frac{\left\langle M_{1}\right\rangle}{2}\left(\partial_{n}^{2}\left\langle M_{n}\right\rangle+\frac{1}{n} \partial_{n}\left\langle M_{n}\right\rangle\right)
$$

d) $2 n+1 \gg 1$

$$
\begin{array}{r|c}
n \rightarrow a n & \eta=\frac{n^{2}}{t} \\
t \rightarrow a^{2} t & \left\langle M_{n}[t]\right\rangle \sim\left\langle M\left[\frac{n^{2}}{t}\right]\right\rangle \\
2 d_{\eta}^{2}\left\langle M_{n}\right\rangle+\left(\frac{1}{\left\langle M_{1}\right\rangle}+\frac{2}{\eta}\right) d_{\eta}\left\langle M_{n}\right\rangle=0
\end{array}
$$

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Multipole Diffusion :

Georg G. Raffelt and Günter Sigl Phys. Rev. D 75, 083002

Bhattacharyya, Dasgupta (2020) Phys.Rev.Lett. 126 (2021) 6, 061302
 d) $2 n+1 \gg 1$

Single decoupled O.D.E

Diffusion from low to high \mathbf{n} multipoles

Irreversibility !!

$$
\left\langle M_{n}[t]\right\rangle=c_{1} \operatorname{Ei}\left[-n^{2} /\left(2\left\langle M_{1}\right\rangle t\right)\right]+c_{2}
$$

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Breaking of flavor waves:

$$
\begin{array}{r}
\left(\partial_{t}+i v k\right) \mathrm{S}_{v}^{\perp}[k, t]=i \mu_{0} \int_{-\infty}^{+\infty} d k^{\prime} \int_{-1}^{+1} d v^{\prime} G_{v^{\prime}}\left(1-v v^{\prime}\right) \\
\quad\left(-\mathrm{S}_{v}^{\perp}\left[k^{\prime}, t\right] \mathrm{S}_{v^{\prime}}^{\|}\left[k-k^{\prime}, t\right]+\mathrm{S}_{v}^{\|}\left[k^{\prime}, t\right] \mathrm{S}_{v^{\prime}}^{\perp}\left[k-k^{\prime}, t\right]\right) .
\end{array}
$$

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Irreversible Pendulum Dynamics

$$
\begin{aligned}
& d_{t} \mathrm{~S}_{v}=\mathrm{H}_{v} \times \mathrm{S}_{v}=\left(-\frac{A}{3}-v \mathrm{M}_{1}\right) \times \mathrm{S}_{v} \\
& \mathrm{M}_{1} \times d_{t}^{2} \mathrm{M}_{1}+\left(\mathrm{D} \cdot \mathrm{M}_{1}\right) d_{t} \mathrm{M}_{1}=\left|\mathrm{M}_{1}\right|^{2} \mathrm{~B} \times \mathrm{M}_{1} \\
& d_{t} \mathrm{~B}=-\frac{3 A}{35} \hat{\mathrm{e}}_{3} \times \mathrm{M}_{1} \\
& \mathrm{D}=\frac{\mathrm{M}_{0}}{3}+\frac{2 \mathrm{M}_{2}}{3} \\
& \mathrm{~B}=\frac{2 \mathrm{M}_{3}}{5}-\frac{9 \mathrm{M}_{1}}{35}
\end{aligned}
$$

"Coarse-grained" Picture

Nonlinear Analysis : Theory of extreme nonlinear behaviour

T2 relaxation in pictures :

Initial

Intermediate

Aug 24, 2021

Final

Nonlinear Analysis : Theory of extreme nonlinear behaviour

T2 relaxation in pictures :

Initial

Not Coarse-grained

Intermediate

Aug 24, 2021

Final

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Flavor depolarized steady state !!

Nonlinear Analysis : Theory of extreme nonlinear behaviour

$$
h_{v}^{\|}=\frac{1}{L} \int_{0}^{L} d z\left|-A / 3-2 / 3 \mathrm{M}_{2}^{\|}-v \mathrm{M}_{1}^{\|}\right| \quad \quad h_{v}^{\perp}=\frac{1}{L} \int_{0}^{L} d z\left|\mathrm{M}_{0}^{\perp}-v \mathrm{M}_{1}^{\perp}\right|
$$

$$
h_{v}^{\perp} \geq h_{v}^{\|}
$$

Nonlinear Analysis : Theory of extreme nonlinear behaviour

$$
h_{v}^{\|}=\frac{1}{L} \int_{0}^{L} d z\left|-A / 3-2 / 3 \mathrm{M}_{2}^{\|}-v \mathrm{M}_{1}^{\|}\right| \quad \quad h_{v}^{\perp}=\frac{1}{L} \int_{0}^{L} d z\left|\mathrm{M}_{0}^{\perp}-v \mathrm{M}_{1}^{\perp}\right|
$$

$$
h_{v}^{\perp} \geq h_{v}^{\|}
$$

Nonlinear Analysis : Theory of extreme nonlinear behaviour

T2 relaxation in reality :

Nonlinear Analysis : Theory of extreme nonlinear behaviour

T2 relaxation in reality :

Nonlinear Analysis : Theory of extreme nonlinear behaviour

T2 relaxation in reality :

Nonlinear Analysis : Theory of extreme nonlinear behaviour

T2 relaxation in reality:

Nonlinear Analysis : Theory of extreme nonlinear behaviour

T2 relaxation in reality:

Nonlinear Analysis : Theory of extreme nonlinear behaviour

final state :

Final state depends on A and zero crossing

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Flavor depolarized final state :

Pendulum dynamics + T2 relaxation + Coarse-graining

$$
\begin{gathered}
\\
\\
E=\frac{\langle\mathrm{D}\rangle \cdot\langle\mathrm{D}\rangle}{2}+\left\langle\mathrm{M}_{1}\right\rangle \cdot\langle\mathrm{B}\rangle=\mathrm{const} \\
m_{f}=\frac{-b u_{i}^{2} \pm \sqrt{b^{2} u_{i}^{4}-4\left(2 b^{2}-4 k u_{i}\right) b u_{i}^{2} m_{i}}}{4 b^{2}-8 k u_{i}}
\end{gathered} \begin{aligned}
& \quad \frac{\langle\mathrm{B}\rangle \cdot\langle\mathrm{B}\rangle}{2}+\langle\mathrm{K}\rangle \cdot\langle\mathrm{D}\rangle=\text { const } \\
& \langle\mathrm{B}\rangle \cdot\langle\mathrm{K}\rangle=\text { const }
\end{aligned}
$$

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Flavor depolarized final state :

$m_{f} \quad$ agress quite well with the numerics !!

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Flavor depolarized final state :

$\frac{\left\langle H_{v}^{\perp}\left[t_{f}\right]\right\rangle}{\left\langle H_{v}^{\|}\left[t_{f}\right]\right\rangle} \approx \frac{v \sqrt{\frac{b\left(m_{i}-m_{f}\right)-\frac{1}{2}\left(\frac{u_{i}^{2} m_{i}^{2}}{m_{f}^{2}}-u_{i}^{2}\right)}{2 k\left(u_{i}-\frac{u_{i} m_{i}}{m_{f}}\right)}}}{\left|-\frac{A}{3}-v m_{f}\right|}$
$\left\langle H_{v}^{\perp}\left[t_{f}\right]\right\rangle \gtrsim O\left(\left\langle H_{v}^{\|}\left[t_{f}\right]\right\rangle\right) \quad\left[v_{\text {min }}, v_{\text {max }}\right]$

Range of fully flavor depolarized modes

Aug 24, 2021

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Flavor depolarized final state :

$$
\left.\frac{\left\langle H_{v}^{\perp}\left[t_{f}\right]\right\rangle}{\left\langle H_{v}^{\|}\left[t_{f}\right]\right\rangle} \gg 1 \quad \begin{array}{c}
v<0 \\
v_{\min } \sim-1 \\
v_{\max } \sim 0
\end{array}\right\} \quad \begin{aligned}
& v \in\left[v_{\min }, v_{\max }\right]: \text { Full Depolarization } \\
& v \notin\left[v_{\min }, v_{\max }\right]: \text { Partial Depolarization } \sim A \downarrow, v_{c} \downarrow
\end{aligned}
$$

Aug 24, 2021

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Flavor depolarized final state :

Amount of flavor depolarization : $f_{v}^{\mathrm{D}}=\frac{1}{2}\left(1-\left\langle\mathrm{S}_{v}^{\|}\right)^{\mathrm{fin}} /\left\langle\mathrm{S}_{v}^{\|}\right\rangle^{\text {ini }}\right)$
Full flavor depolarization : $f_{v}^{\mathrm{D}}=0.5 \quad$ Partial flavor depolarization : $0<f_{v}^{\mathrm{D}}<0.5 \quad$ No flavor depolarization : $f_{v}^{\mathrm{D}}=0$
$\left\langle\mathrm{S}_{v}^{\|}\left[t_{f}\right]\right\rangle=0 \quad \forall v<0$
$\left\langle\mathrm{S}_{v}^{\|}\left[t_{f}\right]\right\rangle \approx \frac{\mathrm{S}_{0}}{2}+\frac{3 \mathrm{~S}_{1}}{2} v \quad \forall v>0$

$$
f_{v}^{\mathrm{D}} \approx \begin{cases}\frac{1}{2}-\frac{A}{4 \gamma_{0}}--\frac{3 A}{8 \gamma_{0}}, & \text { if } \mathrm{v}>0 \\ \frac{1}{2}, & \text { if } v<0\end{cases}
$$

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Flavor depolarized final state :

$G_{v}^{L}\left[v_{c}=0\right]$

$$
G_{v}^{L}\left[v_{c} \neq 0\right]
$$

Nonlinear Analysis : Theory of extreme nonlinear behaviour

Nonlinear Analysis : Theory of extreme nonlinear behaviour

$$
F_{\nu_{e}, \nu_{\mu}}^{\mathrm{fin}}[\vec{p}]=\left(1-f_{\vec{p}}^{\mathrm{D}}\right) F_{\nu_{e}, \nu_{\mu}}^{\mathrm{ini}}[\vec{p}]+f_{\vec{p}}^{\mathrm{D}} F_{\nu_{\mu}, \nu_{e}}^{\mathrm{ini}}[\vec{p}]
$$

Nonlinear Analysis :Take Away Message

- Fast oscillations bring different neutrino flavors close to each other (Flavor depolarization) causing irreversibilty in the system
- We developed the first ever theory of fast oscillations in the nonlinear regime to show how, when, to what extent flavor depolarization happens and what are the various parameters controlling such behaviour.
- We gave a prediction for the final neutrino fluxes undergoing fast oscillations which can be predicted in future neutrino telescopes and can have important consequences in supernova neutrino phenomenology

Results: Linear Analysis

Linear Analysis : Toy Model

Phase Space : 2 space + 1 vel + $\mathbf{1}$ time dimension $\quad v^{2}=v_{x}^{2}+v_{y}^{2}=1$
$\left(\partial_{t}+v_{x} \partial_{x}+v_{y} \partial_{y}\right) \mathrm{S}\left[v_{x}, v_{y}\right]=\mu \int_{-1}^{1} \int_{-1}^{1} d v_{x}^{\prime} d v_{y}^{\prime} \delta\left[v^{\prime}-1\right] G\left[v_{x}^{\prime}, v_{y}^{\prime}\right]\left(1-v_{x} v_{x}^{\prime}-v_{y} v_{y}^{\prime}\right) \mathrm{S}\left[v_{x}^{\prime}, v_{y}^{\prime}\right] \times \mathrm{S}\left[v_{x}, v_{y}\right]$
Dispersion relation : Linear analysis

$$
\begin{aligned}
& \mathrm{S}^{\|}\left[v_{x}, v_{y}\right] \approx 1 \\
& \operatorname{det}\left(\Pi^{\mu \nu}\left[k_{x}, k_{y}, \omega\right]\right)=0 \quad \Pi^{\mu \nu}\left[k_{x}, k_{y}, \omega\right]=\eta^{\mu \nu}+\int_{-1}^{1} \int_{-1}^{1} d v_{x} d v_{y} v^{\mu} v^{\nu} \delta[v-1] \frac{G\left[v_{x}, v_{y}\right]}{\omega-k_{x} v_{x}-k_{y} v_{y}} \\
& \mathcal{D}\left[k_{x}, k_{y}, \omega\right]=-\left(\Pi^{t y}\right)^{2} \Pi^{x x}+2 \Pi^{t x} \Pi^{t y} \Pi^{x y}-\Pi^{t t}\left(\Pi^{x y}\right)^{2}-\left(\Pi^{t x}\right)^{2} \Pi^{y y}+\Pi^{t t} \Pi^{x x} \Pi^{y y}=0
\end{aligned}
$$

Notation : $\quad k_{x}=k \cos \beta \quad k_{y}=k \sin \beta \quad v_{x}=\cos \theta \quad v_{y}=\sin \theta \quad G\left[v_{x}, v_{y}\right] \equiv G[\theta] \quad A=\int_{0}^{2 \pi} G[\theta] d \theta$ Initial Condition : $\quad \mathrm{S}_{v}^{\|}[x, y, 0]=1 \forall v$

$$
\mathrm{S}_{v}^{\perp}[x, y, 0]=O\left(10^{-6}\right)
$$

Linear Analysis : Toy Model

$$
G\left[v_{x}, v_{y}\right]=G^{\nu_{e}}\left[v_{x}, v_{y}\right]-G^{\bar{\nu}_{e}}\left[v_{x}, v_{y}\right]
$$

Forward excess

$G[\theta]= \begin{cases}\frac{A-1}{2 \pi}, & \text { if } v_{x}=\cos \theta>0 \\ \frac{1}{2 \pi}, & \text { if } v_{x}=\cos \theta<0\end{cases}$

Forward and Backward excess

$$
G[\theta]= \begin{cases}\frac{A-1}{2 \pi}, & \text { if } v_{x}=\cos \theta>0 \& v_{y}=\sin \theta>0 \\ \frac{1}{2 \pi}, & \text { if } v_{x}=\cos \theta<0 \& v_{y}=\sin \theta>0 \\ \frac{A-1}{2 \pi}, & \text { if } v_{x}=\cos \theta<0 \& v_{y}=\sin \theta<0 \\ \frac{1}{2 \pi}, & \text { if } v_{x}=\cos \theta>0 \& v_{y}=\sin \theta<0\end{cases}
$$

Turbulent medium

$G[\theta]=\frac{A}{2 \pi}+c_{1} \cos m \theta+c_{2} \sin m \theta$

Linear Analysis : Results for Single Crossing

Symmetry :

$$
\begin{gathered}
\Pi^{\mu \nu}\left[k_{x}, k_{y}, \omega\right] \xrightarrow{k_{y} \rightarrow-k_{y}} \eta^{\mu \nu}+\int_{-1}^{1} \int_{-1}^{1} d v_{x} d v_{y} \delta[v-1] \frac{G\left[v_{x}, v_{y}\right]}{\omega-k_{x} v_{x}+k_{y} v_{y}} v^{\mu} v^{\nu} \xrightarrow{v_{y} \rightarrow-v_{y}} \pm \Pi^{\mu \nu}\left[k_{x}, k_{y}, \omega\right] \\
\Pi^{x y} \rightarrow-\Pi^{x y} \quad \Pi^{t y} \rightarrow-\Pi^{t y} \quad \Pi^{t x} \rightarrow \Pi^{t x} \quad \Pi^{x x} \rightarrow \Pi^{x x} \quad \Pi^{y y} \rightarrow \Pi^{y y} \quad \Pi^{t t} \rightarrow \Pi^{t t} \\
\mathcal{D}\left[k_{x}, k_{y}, \omega\right]=-\left(\Pi^{t y}\right)^{2} \Pi^{x x}+2 \Pi^{t x} \Pi^{t y} \Pi^{x y}-\Pi^{t t}\left(\Pi^{x y}\right)^{2}-\left(\Pi^{t x}\right)^{2} \Pi^{y y}+\Pi^{t t} \Pi^{x x} \Pi^{y y}=0 \\
\nabla \\
\mathcal{D}\left[k_{x},-k_{y}, \omega\right]=\mathcal{D}\left[k_{x}, k_{y}, \omega\right]
\end{gathered}
$$

Linear Analysis : Results for Single Crossing

$$
\text { K = } 0 \text { mode : }
$$

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
\Pi^{x y} \rightarrow-\Pi^{x y} \\
\Pi^{t y} \rightarrow-\Pi^{t y}
\end{array}\right\} \begin{array}{l}
k_{x}=k_{y}=0 \\
\omega \equiv \omega_{0}
\end{array} \begin{array}{c}
\Pi^{t y}\left[0,0, \omega_{0}\right]=0 \\
\Pi^{x y}\left[0,0, \omega_{0}\right]=0
\end{array}\right\} \\
& \nabla \Pi_{y y}\left[0,0, \omega_{0}\right]=0 \\
& \omega_{0} \text { real } \\
& \phi^{\mu \nu}=\int_{-1}^{1} \int_{-1}^{1} d v_{x} d v_{y} v^{\mu} v^{\nu} \delta[v-1] G\left[v_{x}, v_{y}\right] \\
& \Pi_{t x}\left[0,0, \omega_{0}\right] \Pi_{t x}\left[0,0, \omega_{0}\right]-\Pi_{t t}\left[0,0, \omega_{0}\right] \Pi_{x x}\left[0,0, \omega_{0}\right]=0 \\
& \omega_{0}^{2}+\omega_{0}\left(\phi_{t t}-\phi_{x x}\right)-\left(\phi_{t t} \phi_{x x}-\left(\phi_{t x}\right)^{2}\right)=0 \\
& \omega_{0} \text { complex if }\left(\phi_{t t}+\phi_{x x}\right)^{2}-4\left(\phi_{t x}\right)^{2}<0
\end{aligned}
$$

Linear Analysis : Results for Single Crossing

$$
A=0
$$

1) $\mathcal{D}\left[k_{x},-k_{y}, \omega\right]=\mathcal{D}\left[k_{x}, k_{y}, \omega\right]$
2) $k_{x}=k_{y}=0 \quad$ unstable
3) Maximum growing fourier mode along k_{x}
4) $\operatorname{Im} \omega$ monotonically decreases w.r.t k
5) Rate of decrease more along k_{y}

$$
A \neq 0
$$

1) ${ }^{\circ}$ Above (1)-(5) points remain unchanged
2) Decrease as a function of is much faster
3) Overall growth rate is suppressed.
$\beta=\frac{3 \pi}{2}$

Linear Analysis : Results for Two Crossings

Symmetry :

$$
\begin{gathered}
\Pi^{\mu \nu}\left[k_{x}, k_{y}, \omega\right] \underset{k_{x} \rightarrow-k_{x}}{k_{y} \rightarrow-k_{y}} \eta^{\mu \nu}+\int_{-1}^{1} \int_{-1}^{1} d v_{x} d v_{y} \frac{G\left[v_{x}, v_{y}\right]}{\omega+k_{x} v_{x}+k_{y} v_{y}} \delta[v-1] v^{\mu} v^{\nu} \xrightarrow[v_{x} \rightarrow-v_{x}]{v_{y} \rightarrow-v_{y}} \pm \Pi^{\mu \nu}\left[k_{x}, k_{y}, \omega\right] \\
\Pi^{x y} \rightarrow \Pi^{x y} \quad \Pi^{t y} \rightarrow-\Pi^{t y} \quad \Pi^{t x} \rightarrow-\Pi^{t x} \quad \Pi^{x x} \rightarrow \Pi^{x x} \quad \Pi^{y y} \rightarrow \Pi^{y y} \quad \Pi^{t t} \rightarrow \Pi^{t t} \\
\mathcal{D}\left[k_{x}, k_{y}, \omega\right]=-\left(\Pi^{t y}\right)^{2} \Pi^{x x}+2 \Pi^{t x} \Pi^{t y} \Pi^{x y}-\Pi^{t t}\left(\Pi^{x y}\right)^{2}-\left(\Pi^{t x}\right)^{2} \Pi^{y y}+\Pi^{t t} \Pi^{x x} \Pi^{y y}=0 \\
\quad \nabla
\end{gathered}
$$

Linear Analysis : Results for Two Crossings

Symmetry :

$$
\begin{gathered}
\Pi^{\mu \nu}\left[k_{x}, k_{y}, \omega\right] \frac{k_{y} \rightarrow-k_{y}}{k_{x} \rightarrow-k_{x}} \eta^{\mu \nu}+\int_{-1}^{1} \int_{-1}^{1} d v_{x} d v_{y} \frac{G\left[v_{x}, v_{y}\right]}{\omega+k_{x} v_{x}+k_{y} v_{y}} \delta[v-1] v^{\mu} v^{\nu} \xrightarrow[v_{x} \rightarrow-v_{x}]{v_{y} \rightarrow-v_{y}} \pm \Pi^{\mu \nu}\left[k_{x}, k_{y}, \omega\right] \\
\Pi^{x y} \rightarrow \Pi^{x y} \quad \Pi^{t y} \rightarrow-\Pi^{t y} \quad \Pi^{t x} \rightarrow-\Pi^{t x} \quad \Pi^{x x} \rightarrow \Pi^{x x} \quad \Pi^{y y} \rightarrow \Pi^{y y} \quad \Pi^{t t} \rightarrow \Pi^{t t} \\
\mathcal{D}\left[k_{x}, k_{y}, \omega\right]=-\left(\Pi^{t y}\right)^{2} \Pi^{x x}+2 \Pi^{t x} \Pi^{t y} \Pi^{x y}-\Pi^{t t}\left(\Pi^{x y}\right)^{2}-\left(\Pi^{t x}\right)^{2} \Pi^{y y}+\Pi^{t t} \Pi^{x x} \Pi^{y y}=0 \\
\mathcal{D}\left[-k_{x},-k_{y}, \omega\right]=\mathcal{D}\left[k_{x}, k_{y}, \omega\right]+\begin{array}{l}
\mathcal{D}\left[-k_{x},-k_{y}, \omega\right]=\mathcal{D}\left[k_{x}, k_{y}, \omega\right] \\
\mathcal{D}\left[-k_{x},-k_{y}, \omega\right]=\mathcal{D}\left[k_{x}, k_{y}, \omega\right]
\end{array}
\end{gathered}
$$

Linear Analysis : Results for Two Crossings

K = 0 mode :

$\left.\left.\begin{array}{l}\Pi^{t x} \rightarrow-\Pi^{t x} \\ \Pi^{t y} \rightarrow-\Pi^{t y}\end{array}\right\} \begin{array}{l}k_{x}=k_{y}=0 \\ \omega \equiv \omega_{0}\end{array} \begin{array}{l}\Pi^{t x}\left[0,0, \omega_{0}\right]=0 \\ \Pi^{t y}\left[0,0, \omega_{0}\right]=0\end{array}\right\} \quad \sim \mathcal{D}\left[0,0, \omega_{0}\right] \longrightarrow \begin{aligned} & \Pi_{t t}\left[0,0, \omega_{0}\right]=0 \\ & \omega_{0} \text { real }\end{aligned}$

$$
\begin{gathered}
\Pi_{x y}\left[0,0, \omega_{0}\right] \Pi_{x y}\left[0,0, \omega_{0}\right]-\Pi_{x x}\left[0,0, \omega_{0}\right] \Pi_{y y}\left[0,0, \omega_{0}\right]=0 \\
\omega_{0}^{2}-\omega_{0}\left(\phi_{x x}+\phi_{y y}\right)+\left(\phi_{x x} \phi_{y y}-\left(\phi_{x y}\right)^{2}\right)=0 \\
\omega_{0} \text { complex if }\left(\phi_{x x}-\phi_{y y}\right)^{2}+4\left(\phi_{x y}\right)^{2}<0
\end{gathered}
$$

Linear Analysis : Results for Two Crossings

$$
A=0
$$

1) $\mathcal{D}\left[k_{x},-k_{y}, \omega\right]=\mathcal{D}\left[k_{x}, k_{y}, \omega\right]$

$$
\mathcal{D}\left[-k_{x}, k_{y}, \omega\right]=\mathcal{D}\left[k_{x}, k_{y}, \omega\right]
$$

$$
\mathcal{D}\left[-k_{x},-k_{y}, \omega\right]=\mathcal{D}\left[k_{x}, k_{y}, \omega\right]
$$

2) $k_{x}=k_{y}=0$ stable
3) Maximum growing fourier mode along k_{y}
4) $\operatorname{Im} \omega$ shows lorentzian nature w.r.t k
5) More wide along k_{y}

$$
A \neq 0
$$

1) $\quad \mathcal{D}\left[-k_{x},-k_{y}, \omega\right]=\mathcal{D}\left[k_{x}, k_{y}, \omega\right]$
2) Points (2), (4), (5) remain same 3) Maximum growing fourier mode along one of the diagonal
3) Wideness of the lorentzian decreases
4) Overall growth rate is suppressed.

Linear Analysis : Results for Many Crossings

$$
\Pi^{\mu \nu}=\eta^{\mu \nu}+\int_{0}^{2 \pi} d \theta \frac{1}{\omega-k \cos (\theta-\beta)} G[\theta] W^{\mu \nu}[\theta]=\eta^{\mu \nu}+\int_{0}^{2 \pi} d \theta \exp \left[F^{\mu \nu}[\theta]\right] \quad W[\theta]=\left(\begin{array}{cc}
1 & \cos \theta \\
\cos \theta & \sin \theta \\
\cos \theta & \sin \theta \cos \theta \\
\sin \theta & \sin \theta \cos \theta
\end{array} \sin ^{2} \theta \quad l\right)
$$

Saddle point

approximation

$$
\Pi^{\mu \nu}\left[k_{\max }, \beta_{\max }, \omega\right] \frac{F^{\mu \nu}\left[\theta_{0}\right]+\left.\left(\theta-\theta_{0}\right)^{2} \frac{d^{2} F^{\mu \nu}[\theta]}{d \theta^{2}}\right|_{\theta=\theta_{0}}}{G[\theta]=\frac{A}{2 \pi}+c_{1} \cos m \theta+c_{2} \sin m \theta} \operatorname{Im} \omega_{\max } \propto \frac{1}{m}
$$

Linear Analysis :Take Away Message

- We did a linear study (both numerically and analytically) in higher dimensional phase space
- Our study suggests the linear behaviour of fast oscillations is connected to the number of zero crossings, shapes, symmetry and various other nature (lepton asymmetry) of neutrino angular distributions in momentum space
- ELN's with large number of zero crossings lead to a relatively smaller growth rate and thus can have interesting consequences in realistic turbulent SN environment

on-linear Analysis An Aside

Nonlinear Analysis : An Aside

Universality of Depolarization

 FactorDirac delta seed

$$
\mathrm{S}_{v}^{(1),(2)}[z, t=0] \sim \epsilon \delta[z]
$$

Extended seed

$$
\mathrm{S}_{v}^{(1)}[z, t=0]=10^{-6} \cos \phi[z]
$$

$$
\mathrm{S}_{v}^{(2)}[z, t=0]=10^{-6} \sin \phi[z]
$$

$$
\phi[z]=\frac{1}{N_{z}} \sum_{j=0}^{N_{z}-1} \cos \left[\frac{2 \pi j z}{L}\right]
$$

Nonlinear Analysis : An Aside

- Approximate steady state behaviour in time
- Bloch vector S_{v} : Spatial precession with frequency $\frac{1}{v}$ around a common axis M_{0}

$$
d_{x} \mathrm{~S}_{v}[x]=\frac{\mathrm{M}_{0}[x]}{v} \times \mathrm{S}_{v}[x] \quad \mathrm{M}_{n}=\int_{-1}^{1} G_{v} L_{n}[v] \mathrm{S}_{v} d v
$$

- M_{0} : Gyroscopic pendulum in space under the action of spatially varying magnetic field B

$$
\begin{gathered}
\mathrm{M}_{0} \times d_{x}^{2} \mathrm{M}_{0}+\left(\mathrm{D} \cdot \mathrm{M}_{0}\right) d_{x} \mathrm{M}_{0}=M_{0}^{2} \mathrm{~B} \times \mathrm{M}_{0} \\
d_{x} \mathrm{~B}[x]=\sum_{p, r, n=0}^{\infty} \ell_{0 p} \ell_{p r} \ell_{r n}\left(\mathrm{M}_{0}[x] \times \mathrm{M}_{n}[x]\right)
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{B}=\sum_{r, n=0}^{\infty} \ell_{0 r} \ell_{r n} \mathrm{M}_{n} \\
\ell_{r n}=\left(n+\frac{1}{2}\right) \int_{-1}^{1} \frac{L_{n}(v) L_{r}(v)}{v} d v
\end{gathered}
$$

Nonlinear Analysis : An Aside

- Spatially conserved quantities: Pendulum's energy E, spin σ, length M_{0} and M_{1}

$$
E=\frac{\mathrm{D}^{2}}{2}+\mathrm{M}_{0} \cdot \mathrm{~B} \quad \sigma=\mathrm{M}_{0} \cdot \mathrm{D} \quad M_{0}=\left|\mathrm{M}_{0}\right|
$$

Nonlinear Analysis : An Aside

- Non-separable solution in x \& v. Non-collective nature for any A

$$
\begin{aligned}
& \left.d_{x} \mathrm{~S}_{v}[x]=\frac{\mathrm{M}_{0}[x]}{v} \times \mathrm{S}_{v}[x] \longrightarrow \mathrm{S}_{v}=\left(\begin{array}{l}
f_{1}[x] h_{1}[v] \\
f_{2}[x] h_{2}[v] \\
f_{3}[x] h_{3}[v]
\end{array}\right) \longrightarrow \begin{array}{l}
v h_{i}[v]=H_{j} h_{k}[v]-h_{k}[v] H_{j} \\
\frac{d}{d x} f_{i}[x]=f_{j}[x] f_{k}[x]
\end{array}\right\} \begin{array}{l}
\mathrm{S}_{v}=0 \\
v \neq 0
\end{array} \\
& R_{v_{1}, v_{2}}^{i}[x, t]=\frac{s_{v_{1}}^{i}[x, t]}{s_{v_{1}}[x, t]} \text { For fixed }\left(v_{1}, v_{2}\right) \quad \text { Independent of } x \text { Separable in } \mathbf{x} \& \mathbf{v}
\end{aligned}
$$

Nonlinear Analysis : An Aside

- Non-separable solution in x \& v. Non-collective nature for any A

$$
\left.d_{x} \mathrm{~S}_{v}[x]=\frac{\mathrm{M}_{0}[x]}{v} \times \mathrm{S}_{v}[x] \longrightarrow \mathrm{S}_{v}=\left(\begin{array}{l}
f_{1}[x] h_{1}[v] \\
f_{2}[x] h_{2}[v] \\
f_{3}[x] h_{3}[v]
\end{array}\right) \longrightarrow \begin{array}{l}
v h_{i}[v]=H_{j} h_{k}[v]-h_{k}[v] H_{j} \\
\frac{d}{d x} f_{i}[x]=f_{j}[x] f_{k}[x]
\end{array}\right\} \begin{aligned}
& \mathrm{S}_{v}=0 \\
& v \neq 0
\end{aligned}
$$

Backup Slides

Nonlinear Analysis

Linear Analysis

Derivation of irreversible pendulum equation

$$
\begin{aligned}
& d_{t}\left\langle\mathrm{M}_{n}\right\rangle-\left\langle\mathrm{M}_{0}\right\rangle \times\left\langle\mathrm{M}_{n}\right\rangle=-\left\langle\mathrm{M}_{1}\right\rangle \times\left(\frac{2 n}{2 n+1}\left\langle\mathrm{M}_{n-1}\right\rangle+\frac{2 n+2}{2 n+1}\left\langle\mathrm{M}_{n+1}\right\rangle\right) \\
& d_{t}\left\langle\mathrm{M}_{0}\right\rangle=0 \\
& d_{t}\left\langle\mathrm{M}_{1}\right\rangle=\langle\mathrm{D}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle \\
& d_{t} \mathrm{D}=\mathrm{B} \times \mathrm{M}_{1} \\
& \begin{array}{l}
d_{t} \mathrm{~B}=\mathrm{K} \times \mathrm{M}_{1} \\
\mathrm{D}=\frac{\mathrm{M}_{0}}{3}+\frac{2 \mathrm{M}_{2}}{3} \\
\mathrm{~B}=\frac{2 \mathrm{M}_{3}}{5}-\frac{9 \mathrm{M}_{1}}{35}
\end{array} \\
& \begin{aligned}
\left.d_{t}^{2} \mathrm{M}_{1}=\left(\mathrm{B} \times \mathrm{M}_{1}\right) \times \mathrm{M}_{1}+\mathrm{D} \times d_{t} \mathrm{M}_{1}\right\rangle \times d_{t}^{2}\left\langle\mathrm{M}_{1}\right\rangle+\left(\langle\mathrm{D}\rangle .\left\langle\mathrm{M}_{1}\right\rangle\right) d_{t}\left\langle\mathrm{M}_{1}\right\rangle=\left|\left\langle\mathrm{M}_{1}\right\rangle\right|^{2}\langle\mathrm{~B}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle
\end{aligned} \\
&
\end{aligned}
$$

Derivation of Conserved quantities

$$
\begin{aligned}
& \left.\begin{array}{l}
d_{t}\left\langle\mathrm{M}_{1}\right\rangle=\langle\mathrm{D}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle \\
d_{t}\langle\mathrm{D}\rangle=\langle\mathrm{B}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle \\
d_{t}\langle\mathrm{~B}\rangle=\langle\mathrm{K}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle
\end{array}\right\} \quad \begin{array}{l}
E=\frac{\langle\mathrm{D}\rangle \cdot\langle\mathrm{D}\rangle}{}+\left\langle\mathrm{M}_{1}\right\rangle \cdot\langle\mathrm{B}\rangle=\text { const } \\
\sigma=\left\langle\mathrm{M}_{1}\right\rangle \cdot\langle\mathrm{D}\rangle=\text { const }
\end{array} \\
& \begin{array}{l}
d_{t} E=\langle\mathrm{D}\rangle \cdot\left(\langle\mathrm{B}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle\right)+\left(\langle\mathrm{D}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle\right) \cdot\langle\mathrm{B}\rangle=0 \\
d_{t} \sigma=\left(\langle\mathrm{D}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle\right) \cdot\langle\mathrm{D}\rangle+\left\langle\mathrm{M}_{1}\right\rangle \cdot\left(\langle\mathrm{B}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle\right)=0
\end{array} \quad \mathrm{~A} \cdot(\mathrm{~B} \times \mathrm{C})=\mathrm{B} .(\mathrm{C} \times \mathrm{A})
\end{aligned}
$$

Derivation of pendulum's final position

EOM :

$$
\begin{gathered}
d_{t}\left\langle\mathrm{M}_{1}\right\rangle=\langle\mathrm{D}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle \\
d_{t}\langle\mathrm{D}\rangle=\langle\mathrm{B}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle \\
d_{t}\langle\mathrm{~B}\rangle=\langle\mathrm{K}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle
\end{gathered}
$$

Conserved qty:

$$
\begin{aligned}
& E=\frac{\langle\mathrm{D}\rangle \cdot\langle\mathrm{D}\rangle}{2}+\left\langle\mathrm{M}_{1}\right\rangle \cdot\langle\mathrm{B}\rangle=\mathrm{const} \\
& \sigma=\left\langle\mathrm{M}_{1}\right\rangle \cdot\langle\mathrm{D}\rangle=\mathrm{const} \\
& \frac{\mathrm{~B}\rangle \cdot\langle\mathrm{B}\rangle}{2}+\langle\mathrm{K}\rangle \cdot\langle\mathrm{D}\rangle=\mathrm{const} \\
& \langle\mathrm{~B}\rangle \cdot\langle\mathrm{K}\rangle=\text { const }
\end{aligned}
$$

Notations: $\quad \mathrm{M}_{1}^{\|} \equiv m \quad \mathrm{M}_{1}^{\perp} \equiv \mathrm{M} \quad \mathrm{D}^{\|} \equiv u \quad \mathrm{~B}^{\|} \equiv b \quad \mathrm{~K}^{\|} \equiv k$ $i \equiv$ initial $f \equiv$ final
At pendulum's southernmost position :
$d_{t} m_{f}=0$

Derivation of pendulum's final position

EOM :

$$
\begin{aligned}
& d_{t}\left\langle\mathrm{M}_{1}\right\rangle=\langle\mathrm{D}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle \\
& d_{t}\langle\mathrm{D}\rangle=\langle\mathrm{B}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle \\
& d_{t}\langle\mathrm{~B}\rangle=\langle\mathrm{K}\rangle \times\left\langle\mathrm{M}_{1}\right\rangle
\end{aligned}
$$

Conserved qty:

$$
\begin{align*}
& E=\frac{\langle\mathrm{D}\rangle \cdot\langle\mathrm{D}\rangle}{2}+\left\langle\mathrm{M}_{1}\right\rangle \cdot\langle\mathrm{B}\rangle=\text { const } \\
& \sigma=\left\langle\mathrm{M}_{1}\right\rangle \cdot\langle\mathrm{D}\rangle=\text { const } \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\frac{\langle\mathrm{B}\rangle \cdot\langle\mathrm{B}\rangle}{2}+\langle\mathrm{K}\rangle \cdot\langle\mathrm{D}\rangle=\mathrm{const} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\langle\mathrm{B}\rangle \cdot\langle\mathrm{K}\rangle=\mathrm{const} \tag{4}
\end{equation*}
$$

(4)

Notations: $\quad \mathrm{M}_{1}^{\|} \equiv m \quad \mathrm{M}_{1}^{\perp} \equiv \mathrm{M} \quad \mathrm{D}^{\|} \equiv u \quad \mathrm{~B}^{\|} \equiv b \quad \mathrm{~K}^{\|} \equiv k$

$$
i \equiv \text { initial } \quad f \equiv \text { final }
$$

At pendulum's southernmost position :
$d_{t} m_{f}=0$

$$
\rightarrow \mathrm{D}_{f}=\left(0,0, u_{f}\right) \xrightarrow{\text { Eq.(1) }} m_{i} u_{i}=m_{f} u_{f}
$$

$$
\text { Eq.(4) } \longrightarrow b_{f}=b_{i}=b
$$

$$
\begin{gather*}
\text { Eq.(1), (3) } \longrightarrow \frac{u_{f}^{2}-u_{i}^{2}}{2}=b\left(m_{i}-m_{f}\right)-M_{f} B_{f}^{\perp} \cos \theta_{M G} \tag{1}\\
\left(B_{f}^{\perp}\right)^{2}=2 k\left(u_{i}-u_{f}\right)
\end{gather*}
$$

$$
t=t_{f} \longrightarrow \mathrm{~B}| | \mathrm{M}_{1} \text { approximation }
$$

$$
\begin{equation*}
\left(\frac{b}{B_{f}^{\perp}}\right)^{2}=\left(\frac{m_{f}}{M_{f}}\right)^{2} \tag{9}
\end{equation*}
$$

Derivation of pendulum's final position

$$
\begin{align*}
\frac{u_{f}^{2}-u_{i}^{2}}{2} & =b\left(m_{i}-m_{f}\right)-M_{f} B_{f}^{\perp} \cos \theta_{M G} \tag{7}\\
\left(B_{f}^{\perp}\right)^{2} & =2 k\left(u_{i}-u_{f}\right) \tag{8}\\
\left(\frac{b}{B_{f}^{\perp}}\right)^{2} & =\left(\frac{m_{f}}{M_{f}}\right)^{2}
\end{align*}
$$

Derivation of diffusion equation

$$
\begin{gathered}
\partial_{t} \mathrm{M}_{n}-\mathrm{M}_{0} \times \mathrm{M}_{n}=\partial_{z}\left(\frac{n+1}{2 n+1} \mathrm{M}_{n+1}+\frac{n}{2 n+1} \mathrm{M}_{n-1}\right)-\mathrm{M}_{1} \times\left(\frac{n+1}{2 n+1} \mathrm{M}_{n+1}+\frac{n}{2 n+1} \mathrm{M}_{n-1}\right) \\
\quad \text { Dot with } \mathrm{M}_{n} \\
\partial_{t} M_{n}-\mathrm{u}_{n} \cdot \partial_{z} \mathrm{~T}_{n}=\left(\mathrm{M}_{1} \times \mathrm{u}_{n}\right) \cdot \mathrm{T}_{n} \quad \mathrm{~T}_{n}=\frac{n+1}{2 n+1} \mathrm{M}_{n+1}+\frac{n}{2 n+1} \mathrm{M}_{n-1} \\
\mathrm{~T}_{n}=\frac{n+1}{2 n+1} \mathrm{M}_{n+1}+\frac{n}{2 n+1} \mathrm{M}_{n-1} \approx \mathrm{M}_{n}+\frac{\partial_{n} \mathrm{M}_{n}}{2 n}+\frac{\partial_{n}^{2} \mathrm{M}_{n}}{2}+\ldots
\end{gathered}
$$

Averaging procedure distributes in a phase averaged sense

Diffusion equation

