Korean EIC \& J/ ψ Photoproduction

Yongseok Oh
(Kyungpook National University)

- Asia Pacific Center for Theoretical Physics (APCTP) \& Activities of Korean EIC Community
- J/ Ψ Photoproduction off Nucleons

Asia Pacific Center for Theoretical Physics (APCTP)

- A hub for our activities

ASIA PACIFIC CENTER FOR THEORETICAL PHYSICS POHANG, KYUNGPOOK, KOREA

Members

17 Member countries 34 Partnership Institutions

0 Member Institutes	Japan
Australia	Japan
matrix	YITP (Yukawa Institute for Theoretical Physics)
AIP (Australian Institute of Physics)	ISSP (The Institute for Solid State Physics) RIKEN (Rikagaku Kenkyujo)
	RCNP (Research Center for Nuclear Physics)
	Research Center for the Early Universe (RESCEU)

APCTP Milestones

- A hub-institute of theoretical physics in Asia Pacific region to facilitate collaboration \& exchange of scientists to provide a platform for scientists of less advanced region
- Currently, 17 member economies (entities) in the Asia Pacific regions \& 34 partner institutes (including IUPAP, AAPPS, KPS, ICTP, ECT*, IOP-CAS, ISSP, IBS, etc.)
- APCTP headquarters located in Pohang (POSTECH), Republic of Korea

APCTP Activities

- Academic Activity Hub
\checkmark Int'l/Domestic Conference/Workshop/etc.
\checkmark Topical Research Program (TRP) APEC TRP
\checkmark Benjamin Lee Professorship
- In-house Research
\checkmark Junior Research Group (JRG)
\checkmark Young Scientist Training Program (YST) APEC YST
\checkmark Senior Advisory Group (SAG)
- International Cooperation
\checkmark Cooperation with APEC, AAPPS
\checkmark Publication of the AAPPS Bulletin

Academic Activities

Year	'12	'13	'14	'15	'16	'17	18	'19	20	21	Average
No. Of participants	2,438	3,001	2,515	2,753	3,449	2,607	2,989	3,379	3,367	6,554	$\begin{gathered} 3,305 / \\ \text { year } \end{gathered}$

AAPPS Bulletin

Editors

EDITOR-IN-CHIEF

LONG, Gui-Lu, Tsinghua University, Beijing

DEPUTY EDITOR-IN-CHIEF

JUNG, Woo-Sung, POSTECH, Pohang
KWEK, Leong Chuan, Center for Quantum Technologies, Singapore
SHENG, Yu-Bo, Nanjing University of Posts and Telecommunications, Nanjing

SENIOR EDITORS

ALAM, Jan-e, Variable Energy Cyclotron Centre, Kolkata BATCHELOR, Murray, Australian National University, Canberra CHEN, Jiunn-Wei, National Taiwan University, Taipei
CHEONG, Hyeonsik, Sogang University, Seoul
HU, Hui, Swinburne University of Technology, Melbourne
HUANG, Zhiming, SITP, CAS, Shanghai
MA, Xu-Cun, Tsinghua University, Beijing
MAEKAWA, Sadamichi, RIKEN, Saitama

AAPPS Bulletin

Journal home > Volumes and issues > Volume 32, issue 1
Search within journal

Advances of LINAC-based boron neutron capture therapy in Korea
Young-soon Bae, Dong-Su Kim ... Sun-Sun Park
Review article Open Access Published: 27 October 2022 Article: 34

Manipulation and enhancement of asymmetric steering via down-converted nondegenerate photons
Tie Wang, Xue Han ... Hong-Fu Wang
Original article Open Access Published: 27 October 2022 Article: 33
NAGAMIYA, Shoji, RIKEN, Saitama

NAMKUNG, Won, POSTECH, Pohang
OGATA, Masao, University of Tokyo, Tokyo
PEARCE, Paul, University of Melbourne, Melbourne
SASAKI, Misao, Kavli IPMU, Kashiwa
ZHANG, Hong-Hao, Sun Yat-Sen University, Guangzhou

Nuclear Physics

LIU, Weiping, China Institute of Atomic Energy, Beijing
MA, Yong Liang, Hangzhou Institute for Advanced Study, UCAS, Hangzhou
OH, Yongseok, Kyungpook National University, Daegu
SHIMOURA, Susumu, University of Tokyo, Tokyo
YAN, Hai-Yang, Institute of Nuclear Physics and Chemistry, Mianyang

Workshops

Workshop on Nucleon and Resonance Structure with Hard Exclusive Processes, IPN Orsay, France, May 29-31, 2017

Exploring Hadrons with Electromagnetic Probes: Structure, Excitations, Interactions, JLAB, Nov. 2-3, 2017

The Nature of Hadron Mass and Quark-Gluon Confinement from JLAB Experiments in the 12-GeV Era, APCTP, Pohang, July 1-4, 2018

2nd PSQ@EIC Meeting (APCTP-CFNS Joint Meeting),
Kyongju+online, July 19-23, 2021

APCTP Focus Program in Nuclear Physics 2021, Kyongju+online, Jul. 19-24, 2021

Light Cone 2021: Physics of Hadrons on the Light Front, Jeju Island, Nov. 29-Dec. 4, 2021

Workshops

APCTP Workshop on Nuclear Physics 2022, Physics of Excited Hadrons in the Present and Future Facilities, Jeju Island, July 11-16, 2022

APCTP Focus Program in Nuclear Physics 2022, Hadron Physics Opportunities with JLab Energy and Luminosity Upgrade, APCTP, Pohang, July 18-23, 2022

APCTP Workshop on the Physics of Electron Ion Collider, Howard Johnson Hotel, Incheon, Nov. 2-4, 2022

APCTP-ECT* Joint Workshop: Exploring resonance structure with transition GPDs, ECT*, Trento, Italy, May 2023

APCTP Focus Program in Nuclear Physics 2023: Hadron Physics with Hadronic Probes, APCTP, Pohang, Korea, July 2023

Baryons 2025 (17th International Conference on the Structure of Baryons), Jeju Island, Summer 2025

Partnership

$1 \circ L \cdot C \cdot A \cdot C$, Inc.

The International Light
Cone
Advisory
Committee, Inc.

ILCAC News

- LC2020 is moved to LC2021 to be held at Jeju Island, Korea, July 5-10, 2021 - March 1, 2020: ILCAC selects 2020 McCartor

Fellowship awardees Fellowships

- Donate to the Gary McCartor Fund

Joint workshop with Bogolyubov Laboratory of Theoretical Physics of Joint Institute for Nuclear Physics, Dubna, Russia since 2007.

Nuclear/Particle Experiment Groups in Korea

Precedent Contributions for International Collaborations

KOREA-CERN COLLABORATION PROGRAM (since 2006)

(K-CMS, KO-ALICE, \& Theory, now about 4M USD per year)

RPC gap production for CMS

- A longstanding hardware activity from 1990s by Korean high energy \& nuclear physics groups

Mass production of GEM foils

- CMS upgrade
- R\&D from 2014 by K-CMS group
- GE1/1, ME0

MAPS upgrade for ALICE ITS

- R\&D for Pixel chip design and beam test
- Ko-ALICE groups
- Inha U., Yonsei U., PNU

Potential Korean involvement for EIC

To Maximize Productivity ...

Extension of ongoing hardware developments for EIC detectors

- ALICE ALPIDE, Focal -> EIC vertex tracker and calorimeter
- CMS MTD, GEM -> EIC LGAD, μ RWELL
- FCC DRC
-> EIC calorimeter (upgrade)

Active collaboration with foreign groups

- BNL, ORNL, LANL, RIKEN, and more…
- Allows concentrating on well defined tasks and minimizes risks
- Korean groups are very interested in the involvement of EIC program
- Active discussion ongoing among nuclear, high energy, hadron physics societies
- For EPIC, we are interested in contribution of following projects
- Electronics for calorimeters (HGCROC)
- μ RWELL gas detector
- Silicon pixel tracker
- LGAD sensor
- Dual readout calorimeter
- To realize the involvement, we are ...
- constructing the concrete goal and plan to be achieve with limited manpower and funding
- open for international collaboration particularly with labs in the US and nearby countries
- seeking for substantial long-term support for R\&D and detector construction

Proposed partnership w/ international collab.

Expected manpower: ~10 universities, ~ 50 members (including ~ 15 faculty members)

J / Ψ Photoproduction off Nucleons

T.-S. H. Lee, S. Sakinah, Y. Oh, arXiv:2210.02154, to be published in Eur. Phys. J. A

Models for VM photoproduction

Photoproduction of neutral vector mesons

Searching for missing resonances

Light VM photoproduction

PRODUCTION MECHANISMS

Pomeron Exchange Model

Donnachie-Landshoff
Pomeron: $\mathrm{C}=+1$ isoscalar photon
$\mathcal{M}=\varepsilon_{\nu}(\gamma) \mathcal{M}^{\mu \nu} \varepsilon_{\mu}^{*}(V)$
$\mathcal{M}^{\mu \nu}=i 12 e \frac{M_{V}^{2} \beta_{q} \beta_{q^{\prime}}}{f_{V}} \frac{1}{M_{V}^{2}-t}\left(\frac{2 \mu_{0}^{2}}{2 \mu_{0}^{2}+M_{V}^{2}-t}\right) F_{1}(t) \bar{u}\left(p^{\prime}\right)\left\{k \cdot \gamma g^{\mu \nu}-k^{\mu} \gamma^{\nu}\right\} u(p) G_{P}(t)$
$G_{P}(t)=\left(\frac{s}{s_{0}}\right)^{\alpha(t)-1} \exp \left\{-i \frac{\pi}{2}[\alpha(t)-1]\right\}, \quad \alpha(t)=1.08+0.25 t$

Light VM photoproduction

Meson exchange and nucleon pole terms

PRODUCTION MECHANISMS

$$
\begin{aligned}
\mathcal{L} & =\frac{e g_{V \gamma \varphi}}{M_{V}} \varepsilon^{\mu \nu \alpha \beta} \partial_{\mu} V_{\nu} \partial_{\alpha} A_{\beta} \varphi+\frac{g_{\varphi N N}}{2 M_{N}} \bar{N} \gamma^{\mu} \gamma_{5} \partial_{\mu} \varphi N \\
& -e \bar{N}\left(A_{\mu} \gamma^{\mu}-\frac{\kappa_{p}}{2 M_{N}} \sigma_{\mu \nu} \partial^{\nu} A^{\mu}\right) N+\mathcal{L}_{V N N}
\end{aligned}
$$

Couplings from
and pion photoproduction studies, etc

$$
g_{\pi N N}^{2} / 4 \pi=14, \quad g_{\eta N N}^{2} / 4 \pi=1, \quad g_{\rho N N}=6.2, \quad \kappa_{\rho}=1.0, \quad g_{\omega N N}=10.3, \kappa_{\omega}=0 \quad g_{\omega \gamma \pi}=1.8, \quad g_{\omega \gamma \eta}=0.4
$$

Motivation for J/ Ψ production

- Baryon spectrum \& structure
- Recently observed pentaquark state P_{c} (LHCb Collab.)
- To understand this state
- Confirmation by other experiments
- Understanding of J / Ψ-nucleon interactions
$\gamma+N \rightarrow J / \Psi+N$
-Test J/ Ψ-N potential extracted from LQCD
- Predict nuclei with hidden charms
- Investigate gluonic distributions in nuclei

Models of J/ Ψ photo-production

Models in the market

1. Pomeron exchange model (Pom-DL)
2. Pomeron $+\mathrm{J} / \psi-\mathrm{N}$ potential model (Pom-pot)
3. GPD-based model
4. 2-gluons \& 3-gluons exchange model (2g+3g)
5. Holographic approach
6. Pomeron + CQM

With those background, investigate

- $N^{*}\left(P_{c}\right)$ contributions

Model I

Fig. 2 Pomeron-exchange model of Donnachie and Landshoff (Pom$D L)$. Upper: Pomeron-exchange between quarks in J / Ψ and nucleon, Lower: Pomeron-exchange amplitude Eq. (1) resulted from assuming the Pomeron-photon analogy and using the factorization approximation.

Pomeron-exchange (Pom-DL)

Fig. 9 Fits to the data of the total cross sections ($\sigma^{\text {tot }}$) of photoproduction of $\rho^{0}, \phi, J / \Psi$ and $\Upsilon(1 s)$ on the proton target. The solid curves are calculated from using the Pom-DL model. Data are from Refs. [17, 35-37, 95-106].

Fig. 10 Differential cross sections from the Pom-DL model are compared with ZEUS data [17, 35-37]. Upper: at $W=90 \mathrm{GeV}$; Lower: at $W=40 \mathrm{GeV}$ (solid curve) and 140 GeV (dashed curve), data are from averaging the data in the range of $W=40-140 \mathrm{GeV}$.

For light quark VM
For heavy quark VM

$$
\begin{aligned}
& \alpha_{0}=1.08 \quad(\text { for } \rho, \omega), \\
& \alpha_{0}=1.25
\end{aligned}
$$

Fig. 12 Total cross sections calculated from the Pom-DL model are compared with the data. Solid squares are the JLab data [10].

GlueX, PRL 123 (2019)

Model II

Fig. 3 Pom-pot model. Upper: The amplitude of Eq. (2). Lower: J / Ψ N scattering equation (3). Here, v and t stand for $v_{J / \psi N, J / \Psi_{N}}$ and $t_{J / \Psi N, J / \Psi_{N}}$, respectively.

Model III

Fig. 4 GPD-based model. Upper: One of the four two-gluon exchange diagrams of Eq. (5), Lower: The amplitude of Eq. (6).

Model IV

Fig. 5 The $2 g+3 g$ model. Upper: two-gluon exchange, Lower: threegluon exchange.

Model V

Fig. 6 The holographic model.

Exchanges of scalar (0^{+}) and tensor (2^{+}) gluebells

Model VI

Fig. 7 Models with $c \bar{c}$-loop mechanisms. Upper: calculated from quark-nucleon potential $\left(v_{c N}\right)$, Lower: calculated from Pomeronexchange mechanism.

Model II

Fig. 14 The total cross sections of $\gamma+p \rightarrow J / \Psi+p . t^{\mathrm{Pom}}\left(t^{\mathrm{pot}}\right)$ indicates the cross sections calculated from keeping only $t^{\mathrm{Pom}}\left(t^{\mathrm{pot}}\right)$ term in Eq. (38). $t^{\mathrm{Pom}}+t^{\mathrm{pot}}$ indicate the cross sections calculated from the total amplitude.

Model III

Fig. 16 Total cross sections of $\gamma+p \rightarrow J / \Psi+p$ calculated from $2 g+3 g$ model. $2 g(3 g)$ is the contribution from two-gluon (threegluon) exchange amplitudes of Eq. (46).

Model II vs Model III

Model IV

Fig. 19 GPD-based model. Upper: total cross sections, Lower: differential cross sections.

Model V

Fig. 20 Holog model. Upper: total cross sections; Lower: differential cross sections.

Model VI

Fig. 27 Dependence of the total cross sections on the parameter α (upper) and μ (lower) of the quark-nucleon potential $v_{c N}=\alpha \frac{e^{-\mu r}}{r}$ within the Pom-CQM model

N* Contribution

Fig. 21 Fits to the total cross section data of $\gamma+p \rightarrow J / \Psi+p$. The $P_{c}(4337)\left(J^{\pi}(L S)=\frac{1}{2}^{-}\left(0, \frac{1}{2} 1\right), A_{1 / 2}=1 \times 10^{-3} \mathrm{GeV}^{-2}\right)$ is included in the fits with the non-resonant amplitudes calculated from either the Pom-pot (solid curve) or $2 g+3 g$ (dashed curve) models.

Summary

- In the near threshold region, all models for J / Ψ photo-production can describe the available Jlab data equally well, but give rather large differences at large momentum-transfer and in the very near threshold region.

These observations lead to

1. Each model needs improvements for determining N^{*}.
2. Need high precision data at large momentum-transfer and very close to threshold.
3. More detailed and complete understanding of the models is needed to distinguish them. (Spin polarization?)

Thank you

