Plans for AC-LGAD ePIC Barrel ToF

Kenta Shigaki (Hiroshima U. 🚺 広島大学)

& Yasuyuki Akiba, Yuji Goto, Takashi Hachiya, Itaru Nakagawa, <u>Satoshi Yano</u> for the EIC Japan group

> NCU workshop on EIC physics and detectors 9–10 December 2022, Taiwan National Central University

Presentation Outline

- ePIC barrel timing detector
- AC Low Gain Avalanche Diode
 - R&D elements
 - ongoing R&D for ePIC and HL ATLAS
 - BNL/KEK/Tsukuba/Hamamatsu achievements
- EIC-Japan on barrel ToF
 - R&D start up status and plan
 - team Japan experience and capability
 - new "WPI" institute at Hiroshima
- summary and concluding remarks

ePIC Barrel Timing Detector

- ePIC designed compactly with SC solenoid
- requirements for barrel ToF at ~ 80 cm radius:
 - ~ 30 ps time resolution
 - short path length, wide transverse momentum range
 - loose position resolution requirement
 - Iow multiplicity and spatial density
 - $10^{10} n_{eq} \text{ cm}^{-2}$ radiation torrerance
 - integrated at top luminosity L ~ 10³⁴ cm⁻²s⁻¹
 - cf. HL LHC $10^{15-16} n_{eq} \text{ cm}^{-2}$ at L ~ $10^{35} \text{ cm}^{-2} \text{s}^{-1}$
 - ~ 11 m² area
 - insensitivity to magnetic field preferred
 - *nb.* AC-LGAD chosen for ePIC endcap ToF

Low Gain Avalanche Diode (LGAD)

DC (i.e. standard) -LGAD

- individual p⁺ gain layer per electrode
 - inactive gaps between granules
- n⁺⁺-in-p type sensor w/ p⁺ gain layer
 - high dope for high signal conductivity
- AC-LGAD

K. Nakamura et al., JPS Conf. Proc. 34, 010016 (2021)

- spanning p⁺ gain layer w/ multiple electrodes
 - 100% fill factor w/ fine pitch
 - AC coupling w/ oxide layer between n⁺ layer and electrodes
- n⁺- in-p type sensor w/ p⁺ gain layer
 - Iow dope for low sideward conductivity

AC-LGAD better suited for single layer barrel ToF

AC-LGAD R&D Elements

- issues compared to DC-LGAD
 - weaker signal due to AC coupling
 - crosstalk due to charge sharing in spanning n⁺ layer
 - uniformity
- factors for signal strength
 - R_{imp} (higher preferred)
 - low n^+ dope \rightarrow high R_{imp}
 - C_{cp} (higher preferred)
 - high segmentation \rightarrow low C_{cp}
 - thin oxide layer \rightarrow high C_{cp}

K. Nakamura *et al.*, JPS Conf. Proc. 34, 010016 (2021)

hurdles for good time and position resolutions

Ongoing AC-LGAD R&D

BNL, U.S.A.

- inhouse chip manufacture (not for mass production)
- ATLAS Japan bridging ePIC/BNL and Hamamatsu
- KEK and U. Tsukuba, Japan
 - led by Koji Nakamura (KEK)
 - close connection w/ Hamamatsu PHOTONIS OUR BUSINESS
 - pad/strip/pixel; electrode shape/size; oxide properties
 - future ATLAS vertex detector at HL LHC from 2028
- HL LHC more demanding than EIC case
 - 30 ps time resolution, $o(10) \mu m$ position resolution
 - $o(10^{15}) n_{eq} \text{ cm}^{-2}$ radiation tolerance

BNL/Hamamatsu Made Sensors

- ref. R.Heller et al., JINST 17 P05001 (2022)
- strip type by BNL
 - e.g. electrode size effects
- pad type by Hamamatsu
 - e.g. n⁺ dope concentration effects

Strip

proton

Strip type by BNL

3x3 mm² Sensor size

Pad typ	e by HPK
---------	----------

3x3 mm² Sensor size

Name	Pitch	Primary signal amp.	Position res.	Time res.
Unit	μm	mV	μm	ps
BNL 2020	100	101 ± 10	≤6	29 ± 1
BNL 2021 Narrow	100	104 ± 10	≤9	32 ± 1
BNL 2021 Medium	150	136 ± 13	≤11	30 ± 1
BNL 2021 Wide	200	144 ± 14	≤9	33 ± 1
НРК С–2	500	128 ± 12	22 ± 1	30 ± 1
НРК В–2	500	95 ± 10	24 ± 1	27 ± 1

BNL 4" wafer

R. Heller et al., JINST 17 P05001 (2022)

R&D News from KEK/Tsukuba/HPK

- ref. S.Kita et al., VERTEX 2022
 - 24-27 October 2022, Tateyama, Japan
- pixel and strip types prototyped

sensor size: 1 × 1 mm² sensor pitch: 50, 100, 150, 200 μm electrode size: 40, 90, 140, 190 μm

sensor size: $3 \times \sim 10 \text{ mm}^2$ pitch: $80 \mu \text{m}$ electrode width: $40, 45 \mu \text{m}$

resistivity/capacitance parameter optimization

KEK/Tsukuba/HPK Latest Results

- good performance w/ 100 µm pixel and larger
 - next: larger sensor (~ 20 × 20 mm²) w/ ASIC readout

- problem w/ long (e.g. ~ 10 mm) strip
 - unexpectedly weaker signal than pixel
 - inter-electrode capacitance newly noticed
- further R&D for future ATLAS inner tracker

EIC-Japan Barrel ToF Plans

- eager to lead ePIC barrel ToF
 - responsibly like for sPHENIX INTT detector
 - capable to manufacture all components in Japan
- sensor strategy
 - AC-LGAD already (almost) satisfying ePIC barel needs
 - remaining major issue to increase sensor size
 - joining AC-LGAD R&D to finalize sensor design
 - preparing to test ePIC/BNL prototypes first
 - to bridge R&D team (eRD112) and Hamamatsu
- also to take care of other components
 - e.g. FPC, cables, support structures

Team Japan Experiences

Riken w/ sPHENIX INTT experience

- w/ Japanese technologies
- R&D, mass production, QA environments available
- Hiroshima w/ ALICE forward µ tracker experience

R&D Start Up Kit

- contact: Alessandro Tricoli (BNL)
- from ePIC: BNL sensor, EIC ROC, firmware, DAQ
- also: Xilinx board, PC, measuring instruments, ...

Brand-New "WPI" Institute at Hiroshima

- "world premier" center SKCM² just established
 - just funded last month by JSPS for 2022-2031
 - ~ 5 M USD per year × 10 years
 - 14 existing (e.g. Kavli IPMU) + 3 new institutes in Japan

- **K.** Shigaki as PI on exp. nuclear/particle physics
 - to promote interdisciplinary science
 - ePIC declared as one of main projects
- HR, building/facilities, student supports, ...
 - new group/lab to complete in coming years

2022/12/09

EIC Physics and Detectors – AC-LGAD Barrel ToF Plans – K.Shigaki

Summary and Concluding Remarks

- ePIC ToF requiring excellent timing resolution
- AC-LGAD: most promising technology choice
- EIC-Japan eager to lead barrel ToF efforts
 - in addition to forward calorimeter (ref. talk by Y. Goto)
- starting with ePIC/BNL sensor and ROC tests
 - components starting to arrive this month
 - Riken, Hiroshima, and NCU
- Hiroshima joined the team w/ new resources
- very glad to welcome Taiwan to collaborate!

