

Recent Results of GPD Measurements at COMPASS and JLab Hall A

NCU workshop on EIC physics and detectors November 09, 2022

> Po-Ju Lin Institute of Physics, Academia Sinica

Generalized Parton Distributions (GPDs)

At fixed Q², the GPDs depend on the following variables:

x: average longitudinal momentum fraction

- ξ : longitudinal momentum difference
- t: four momentum transfer (correlated to b via Fourier transform)

> A total of 8 GPDs for a specific parton 4 Chiral-even (parton helicity unchanged): $H, E, \widetilde{H}, \widetilde{E}$ 4 Chiral-odd (parton helicity changed): $H_T, E_T, \widetilde{H}_T, \widetilde{E}_T$

Generalized Parton Distributions (GPDs)

Generalized Parton Distributions (GPDs)

Provides information on the interesting properties of the nucleon.

- > Mapping the transverse plane distribution of parton
- Pressure distribution inside nucleon
- Angular momentum of parton

 $r^2p(r)$ in GeV fm⁻¹

M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

 $J_{q} = \frac{1}{2} \int_{-1}^{1} dx \, x [H^{q}(x,\xi,0) + E^{q}(x,\xi,0)]$ Ji's Sum Rule

Exclusive Process

- Use exclusive processes, where all final state particles are "identifieded", to access the muliti-variable dependence of GPDs, and constrain the GPD parameterization with measurements in various phase space.
 Processes:
 - Deeply Virtual Compton Scattering (DVCS)
 - Deeply Virtual Meson Production (DVMP)
 - Time-like Compton Scattering (TCS)
 - Double DVCS (DDVCS)

Landscape – Global Programs of DVCS

6

JLab & COMPASS

 Jlab: Hall A, C, CLAS High Luminosity Polar. 6 & 12 GeV e-Long., (Trans.) polarised p & nuclear target
 Missing mass technique (A,C) and complete detection (CLAS)

High luminosity, limited kinematic coverage
 Test the validity of theoretical formalism

Hall B – CLAS 12

 ➢ Lower luminosity, wide kinematic coverage
 → Map the GPDs

Deeply Virtual Compton Scattering @ COMPASS

COMPASS Experiment

CMS

Versatile facility with hadron (π^{\pm} , K[±], p ...) & lepton (polarized μ^{\pm}) beams of energy 100 to 200 GeV

North Area

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Muon Beams

- $\succ \mu^+ \& \mu^-$ with opposite polarisation
- > About \pm 80% polarisation
- Momentum: 160 GeV/c

Two-stage, large angle, and wide momentum range spectrometer. PID including hadron absorbers, RICH, HCALs, ECALs, and muon filters.

NIM A 577 (2007) & NIM A 779 (2015) 69

Exclusive Muoproduction

Two-stage, large angle, and wide momentum range spectrometer. PID including hadron absorbers, RICH, HCALs, ECALs, and muon filters. NIM A 577 (2007) & NIM A 779 (2015) 69

transverse picture of CAMERA

CAMERA recoil proton detector surrounding the 2.5m long LH2 target

FCA .

II-tate

ad make in the line

ECALO

• 2012 pilot run with 4-week data taking

• 2016-17 dedicated run. 2 x 6 months.

Deeply Virtual Compton Scattering

- > DVCS is regarded as the golden channel and gives access to four chiral-even GPDs $H, \tilde{H}, E, \tilde{E}(x, \xi, t)$. Its interference with the well-understood Bethe-Heitler process gives access to more info.
- > With LH_2 target and small x_B coverage \rightarrow focuses on H at COMPASS

Compton Form Factors (CFFs)

$$\mathcal{Re}\mathcal{H}(\xi,t) = \mathcal{P}\int dx \, \frac{Im\,\mathcal{H}(x,t)}{x-\xi} + \Delta(t)$$

Transverse Imaging and Pressure Distribution

M. Polyakov, P. Schweitzer, Int.J.Mod.Phys. A33 (2018)

suppressed by α_s ¹⁸

Each term involves different form factors.

suppressed by $\alpha_{\rm s}$ ²²

COMPASS 2016 Preliminary Results

$$\begin{split} \Delta \phi &= \phi^{\text{cam.}} - \phi^{\text{spec.}} \\ \Delta p_{\text{T}} &= |p_{\text{T}}^{\text{cam.}}| - |p_{\text{T}}^{\text{spec.}}| \\ \Delta z_{\text{A}} &= z_{\text{A}}^{\text{cam.}} - z_{\text{A}}^{\text{spec.}} \\ M^2_{\text{undet}} &= (k + p - k' - q' - p')^2 \end{split}$$

 $M_{undet}^{2} [(GeV/c^{2})^{2}]_{23}$

COMPASS 2016 Preliminary Results

> Main background of exclusive single photon events: π^0 decay

> Visible (both γ detected) – subtracted

A high-energy DVCS photon candidate is combined with all detected photons with energies lower than the DVCS threshold: (4,5) GeV in Ecal (0,1) respectively

> Invisible (one γ lost) – estimated by MC

- Semi-inclusive LEPTO 6.1
- Exclusive HEPGEN π^0 (GK model)

The sum of LEPTO and HEPGEN contributions is normalized to the π^0 peak in $M_{\gamma\gamma}$ of the real data

Visible π^0 candidates

COMPASS 2016 Preliminary Results

Tranverse extension of partons – 2016 data

 \succ The transverse-size evolution as a function of $x_{Bi} \rightarrow$ Expect at least 3 x_{Bi} bins from 2016-17 data

Hard Exclusive π^0 Production @ Jlab Hall A

Deeply Virtual Meson Production (DVMP)

4 chiral-even GPDs: helicity of parton unchanged

$$\mathbf{H}^q(x, \xi, t)$$
 $\mathbf{E}^q(x, \xi, t)$ $\widetilde{\mathbf{H}}^q(x, \xi, t)$ $\widetilde{\mathbf{E}}^q(x, \xi, t)$

+ 4 chiral-odd or transversity GPDs: helicity of parton changed

$$\begin{array}{ll} \mathbf{H}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathrm{t}) & \mathbf{E}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathrm{t}) \\ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathrm{t}) & \widetilde{\mathbf{E}}_{\mathsf{T}}^{q}(x,\,\xi,\,\mathrm{t}) \end{array} & \overline{\mathbf{E}}_{\mathsf{T}}^{q}=\mathbf{2} \ \widetilde{\mathbf{H}}_{\mathsf{T}}^{q}+\mathbf{E}_{\mathsf{T}}^{q} \end{array}$$

- > Ability to probe the chiral-odd GPDs.
- In addition to nuclear structure, provide insights into reaction mechanism

 $e p \rightarrow e \pi^0 p$

$$\frac{d^{4}\sigma}{dQ^{2}dx_{B}dtd\phi} = \frac{1}{2\pi}\Gamma_{\gamma}(Q^{2}, x_{B}, E)\left[\frac{d\sigma_{T}}{dt} + \epsilon\frac{d\sigma_{L}}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon\frac{d\sigma_{TT}}{dt}\cos(\phi) + h\sqrt{2\epsilon(1-\epsilon)}\frac{d\sigma_{TL'}}{dt}\sin(\phi)\right]$$

$$\epsilon \cdot \text{degree of longitudinal polarization}$$

h: helicity of the initial lepton

- Factorization proven only for σ_L, which depends on chiral-even GPDs only
 At sufficiently high Q², expect σ_L ∝ Q⁻⁶ while σ_T asymptotically suppressed and ∝ Q⁻⁸
 → σ_L dominance
- \blacktriangleright Previous experiments with limited reach in Q² suggest the dominance of σ_{T}

 $e p \rightarrow e \pi^0 p$

$$\frac{d^4\sigma}{dQ^2dx_Bdtd\phi} = \frac{1}{2\pi}\Gamma_{\gamma}(Q^2, x_B, E) \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt}\cos(2\phi) + h\sqrt{2\epsilon(1-\epsilon)}\frac{d\sigma_{TL'}}{dt}\sin(\phi)\right]$$

ϵ: degree of longitudinal polarization*h*: helicity of the initial lepton

> Modeling of $\sigma_T \rightarrow$ coupling between transversity GPDs and twist-3 pion amplitude

S. Goloskokov and P. Kroll (Eur.Phys.J A47, 112(2011))

 $e p \rightarrow e \pi^0 p$

S. V. Goloskokov and P. Kroll, Eur. Phys. J. C65:137 (2010)

---- G. R. Goldstein, J. O. Hernandez, S. Liuti, Phys. Rev. D84 (2011) ³¹

 $e p \rightarrow e \pi^0 p$

$$\frac{d^4\sigma}{dQ^2dx_Bdtd\phi} = \frac{1}{2\pi}\Gamma_{\gamma}(Q^2, x_B, E) \left[\frac{d\sigma_T}{dt} + \epsilon \frac{d\sigma_L}{dt} + \sqrt{2\epsilon(1+\epsilon)}\frac{d\sigma_{TL}}{dt}\cos(\phi) + \epsilon \frac{d\sigma_{TT}}{dt}\cos(2\phi) + h\sqrt{2\epsilon(1-\epsilon)}\frac{d\sigma_{TL'}}{dt}\sin(\phi)\right]$$

 ϵ : degree of longitudinal polarization h: helicity of the initial lepton

Fig: M.G. Alexeev et al. Phys.Lett.B 805 (2020)

S. V. Goloskokov and P. Kroll, Eur. Phys. J. A 47 (2011) 112I. Bedlinskiy, et al. (CLAS Collaboration), Phys. Rev. C 90 (2014) 025205

Jefferson Lab Hall A experiment E12-06-114

https://www.jlab.org/div_dept/physics_division/GeV/whitepaperv11/index.html

 \geq 3rd Generation DVCS project @ Hall A \rightarrow CEBAF12 grants the ability to explore high x_B with extended Q².

DVCS & Exclusive π^0 **Production**

> Electron beam

- polarisation ~ 85%
- helicity flipped at 30 Hz
- luminosity: ~ 10³⁸ Hz/cm²

> LH₂ target

- 6.35 cm diameter, 15 cm long

Left High Resolution Spectrometer (LHRS)

DVCS & Exclusive π^0 **Production**

> δ **P**/**P** resolution ~ 10⁻⁴ @ 4.3 GeV

DVCS & Exclusive π^0 **Production**

Recoil Proton

- > Not detected
- Exclusivity of events ensured using missing mass, M²_X

E12-06-114 Kienmatic Settings

x_B label	0.36				0	0.60			
$\langle x_B \rangle$	0.36	0.36	0.36	0.48	0.45	0.46	0.46	0.59	0.60
E (GeV)	7.38	8.52	10.59	4.49	8.85	8.85	10.99	8.52	10.59
Q^2 (GeV ²)	3.11	3.57	4.44	2.67	4.06	5.16	6.56	5.49	8.31
\widetilde{W}^2 (GeV ²)	6.51	7.29	8.79	3.81	5.62	6.67	8.32	4.58	6.46
$-t_{\rm min}$ (GeV ²)	0.16	0.17	0.17	0.33	0.35	0.35	0.36	0.67	0.71
<i>e</i>	0.61	0.62	0.63	0.51	0.71	0.55	0.52	0.66	0.50

➢ Ran in 2014 & 2016

- ➢ 9 settings with x_B of 0.36, 0.48, and 0.6 and Q^2 ranging from about 3 to 8 GeV²
- ➢ About 50% of allocated 100 PAC days
- Missing PAC days reallocated to the future experiment @ Hall C

Exclusive π^0 Event Selection

- Main background: accidentals. The backgound in the signal coincidence window, [-3,3] ns, is estimated via other time windows.
 Exclusivity → remove the M_X² = (k + P k' q₁ q₂)² contribution from inclusive channels, threshold ≈ 1.15 GeV²
- > π⁰ events → select events with invariant mass $M_{\gamma\gamma} = \sqrt{(q_1 + q_2)^2}$ around the π⁰ mass

Exclusive π^0 Event Selection

- Main background: accidentals. The backgound in the signal coincidence window, [-3,3] ns, is estimated via other time windows.
 Exclusivity → remove the M_X² = (k + P k' q₁ q₂)² contribution from inclusive channels, threshold ≈ 1.15 GeV²
- > π⁰ events → select events with invariant mass $M_{\gamma\gamma} = \sqrt{(q_1 + q_2)^2}$ around the π⁰ mass

Structure-function Extraction

$$\mathbf{p} \frac{d^4\sigma}{dQ^2dx_Bdtd\phi} = \frac{1}{2\pi} \frac{d^2 \Gamma_{\gamma}}{dQ^2dx_B} (Q^2, x_B, E)$$

$$\begin{bmatrix} \frac{d\sigma_{\mathrm{T}}}{dt} + \epsilon \frac{d\sigma_{\mathrm{L}}}{dt} + \sqrt{2\epsilon(1+\epsilon)} \frac{d\sigma_{\mathrm{LT}}}{dt} \cos(\phi) + \epsilon \frac{d\sigma_{\mathrm{TT}}}{dt} \cos(2\phi) \\ + h\sqrt{2\epsilon(1-\epsilon)} \frac{d\sigma_{\mathrm{LT}'}}{dt} \sin(\phi) \end{bmatrix}$$

- Structure functions extracted for all 9 kinematic settings
- Extract different terms via their corresponding
 φ dependence
- > $d\sigma_T$ and $d\sigma_L$ can't be seperated, extracted as $d\sigma_U = d\sigma_T + \epsilon d\sigma_L$
- Main systematic errors come from deviation observed in DIS events and the exclusivity cuts

Structure Functions

Structure Functions

- Solid Markers: Measured $d\sigma_U = d\sigma_T + \epsilon d\sigma_L$
- Dotted curves: P. Kroll, private communications
- - Hint the dominance of $\sigma_{\rm T}$ \rightarrow as suggested by the GK model
- ightarrow GK underestimates both σ_{LT} & $\sigma_{LT'}$
 - Suggest a larger contribution of the logitudinal amplitude than the one expected by GK.
- \succ Sign difference in σ_{LT}
 - Different from Hall B or COMPASS results

Provide useful input for understanding the GPDs involved in the valence domain

DVCS @ Hall A & Exclusive π^0 @ COMPASS

Preliminary results from 2016 data at low ξ
 ((x_B) = 0.0096), with statistics about 2.3
 times larger than the published 2012 pilot run.
 New inputs for phenomenological models.

First experimental extraction of all four helicity-conserving CFFs

F. Georges et al. (JLab Hall A Collaboration), Phys. Rev. Lett. 128, 252002 (June 2022)

Near Future

Expect fruitful measurements coming from JLab-12

- Continuation of DVCS & π^0 at Hall C
- DVCS, DVMP, TCS, even DDVCS

Silicone proton recoil detector between target & polarizing magnet

COMPASS/AMBER

- DVCS \rightarrow Re*H* with charge-spin asymmetry
- DVMP of π^0 , ω , ρ , J/ψ
- Transversely polarized target in AMBER?

Summary & Outlook

COMPASS: DVCS x-sections with polarized μ + and μ -

- Beam charge-spin sum $\rightarrow \text{Im}\mathcal{H}(\xi,t) \rightarrow \text{Transverse extension of partons}$
- Beam charge-spin difference $\rightarrow \operatorname{Re}\mathcal{H}(\xi,t) \rightarrow D$ -term, pressure distribution
- Meson Production \rightarrow Flavor decomposition, gluon GPD

Jlab Hall A E12-06-114: Exclusive π^0 Production

- Reasonable description of results by GK model, improvements required
- Provide inputs for transversity GPD parameterization
- Extension to higher Q² and lower x_B
- $\sigma_{ au}$ and $\sigma_{ extsf{L}}$ separation of $m{\pi^0}$ production $\ .$
- Hall C E12-13-010

Looking forward to GPD Measurements at EIC

Thank you

Backup Slides

COMPASS++/AMBER

A new QCD facility at the M2 beam line of the CERN SPS

- Unique beam line with polarised

 <u>µ[±]</u> and high-intensity Pion beam
- Possible high-intensity antiproton and Kaon beams, provided by RFseparation technique
- With upgraded apparatus

Proposed physics goals

Proton Radius Meson PDF – gluon PDF Proton spin structure 3D imaging (TMDs and GPDs) Hadron spectroscopy Anti-matter cross section

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware Additions
μp elastic scattering	Precision proton-radius measurement	100	4 · 10 ⁶	100	μ^{\pm}	high- pressure H2	2022 1 year	active TPC, SciFi trigger, silicon veto,
Hard exclusive reactions	GPD E	160	2 · 107	10	μ^{\pm}	NH_3^\uparrow	2022 2 years	recoil silicon, modified PT magnet
Input for Dark Matter Search	p production cross section	20-280	$5 \cdot 10^5$	25	р	LH2, LHe	2022 1 month	LHe target
p-induced Spectroscopy	Heavy quark exotics	12, 20	5 · 10 ⁷	25	P	LH2	2022 2 years	target spectr.: tracking, calorimetry
Drell-Yan	Pion PDFs	190	7 · 10 ⁷	25	π^{\pm}	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	NH [↑] ₃ , C/W	2026 2-3 years	"active absorber", vertex det.
Primakoff (RF)	Kaon polarisa- bility & pion life time	~100	5 · 106	>10	<i>K</i> -	Ni	non-exclusive 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5 · 106	10-100	$rac{K^{\pm}}{\pi^{\pm}}$	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 - 106	25	<i>K</i> -	LH2	2026 1 year	recoil TOF, forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5.106	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year	49

Possible RPD for COMPASS++/AMBER

A recoil proton detector (RPD) is mandatory to ensure the exclusivity. A Silicon detector is included *between* the target surrounded by the modified MW cavity *and* the polarizing magnet

A technology developed at JINR for NICA for the BM@N experiment

No possibility for ToF \rightarrow PID of p/ π with dE/dx Momentum and trajectory measurments $|t|_{min} \sim 0.1 \text{ GeV}$

Beam Charge-spin Difference

2012 Exclusive π^0 Prod. on Unpolarized Proton

(GeV/c)

 $\frac{d\sigma(\gamma^*p \rightarrow \pi^0 p)}{d|t|d\phi_{\pi^0}}$

-3

COMPASS, PLB 805 (2020) 135454

 ϕ_{π^0} [rad]

Q² Dependence

- Dashed curves: P. Kroll, private communications
- Solid Markers: Experimental measurements
 - This work, $x_B = 0.36$
 - This work, $x_B = 0.48$
 - This work, $x_B = 0.60$
 - E. Fuchey *et al*, Phys. Rev. C 83, 025201 (2011)
 - M. Defurne *et al*, Phys. Rev. Lett. 117, 262001 (2016)
 - $\succ C(Q^2)^A \exp(-Bt') \text{ fit to experimental results of}$ $d\sigma_U \text{ in different } x_B \rightarrow \text{ solid curves}$ $x_B = 0.36 \rightarrow A = -3.3 \pm 0.1$ $x_B = 0.48 \rightarrow A = -2.9 \pm 0.1$ $x_B = 0.60 \rightarrow A = -3.1 \pm 0.1$
 - > Q² dependence closer to Q⁻⁶, rather than Q⁻⁸ as expected for σ_T at high Q²

 $< t' > = 0.1 \, GeV^2$

Hall A DVCS Cross Sections

 $x_B=0.36, Q^2=3.7 GeV^2, t=-0.33 GeV^2; x_B=0.48, Q^2=5.4 GeV^2, t=-0.33 GeV^2; x_B=0.6, Q^2=8.4 GeV^2, t=-0.91 GeV^2$

