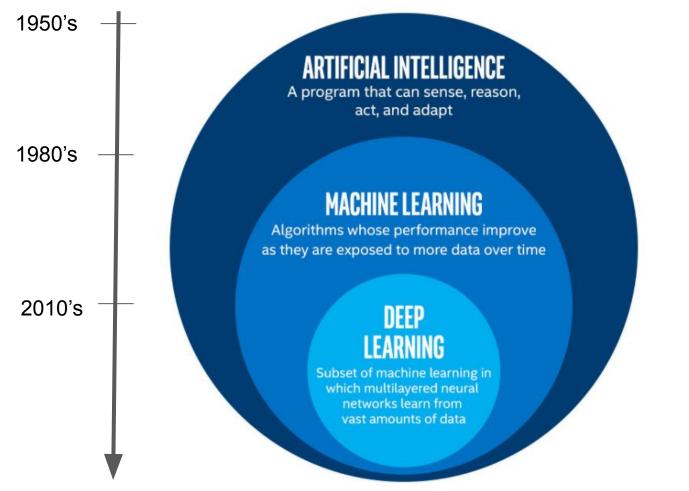
Artificial Intelligence – Tools and Applications in Particle Physics

Pai-hsien Jennifer Hsu National Tsing Hua University

Outline

- What is Artificial Intelligence (AI)?
- What can AI do?
- What does Particle Physics need?
- What can AI do for Particle Physics?

What is AI?



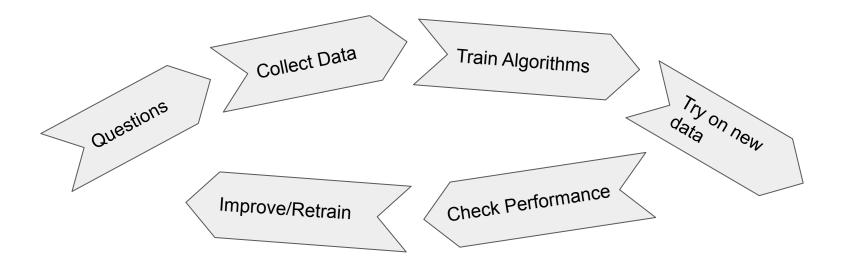
techplusmedia

Artificial Intelligence (AI)

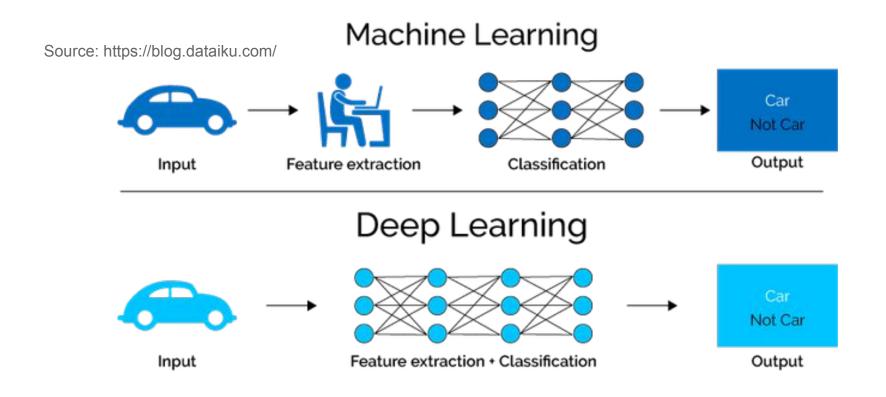
- The science of training machines to perform human tasks
 - Understand human speech
 - Pattern/image recognition
 - Play strategic games (e.g. GO, chess)
 - Drive cars
- An 'old' idea since 1950's

Machine Learning

• A subfield of AI which trains machine how to learn from data without being explicitly programmed

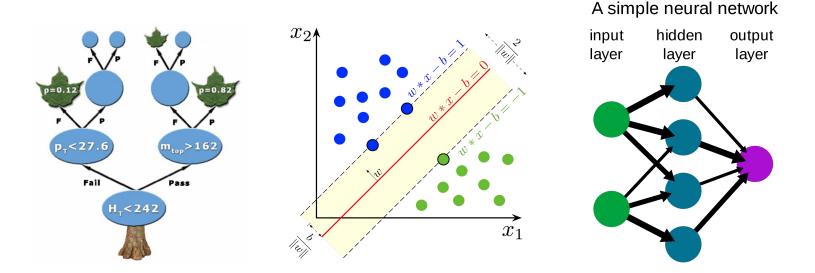


Classical Machine Learning vs Deep Learning



Classical Machine Learning vs Deep Learning

- 'Classical' machine learning typically refers to 'simple' models like decision trees, support vector machines, etc.
- Deep learning involves the use of artificial neural networks.



Neural networks

- Different architectures and algorithms for various purposes.
 - Deep neural networks (DNN): versatile networks with many hidden layers (and neurons).
 Deep Neural Network

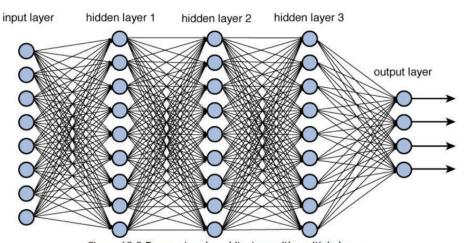
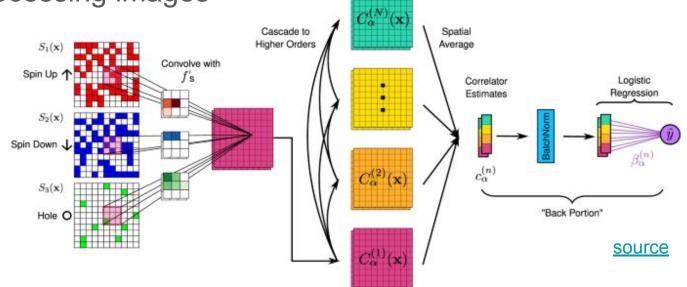


Figure 12.2 Deep network architecture with multiple layers.

source

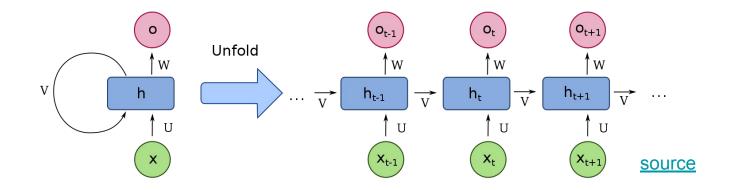
Neural networks

- Different architectures and algorithms for various purposes.
 - Convolutional neural networks (CNN): Powerful tool for processing images



Neural networks

- Different architectures and algorithms for various purposes.
 - Recurrent neural networks (RNN): 'backward' information flow; suitable for analyzing sequential data (like languages)



What can AI do?

Typical Tasks of AI

• Al models are built for specific tasks. For example,

 Classification: Make discrete predictions (classify samples as True/False, or different categories.)

Regression: Make continuous predictions (given a feature X, predict the value of another feature Y).

 Clustering: Separate data into different groups according to their similarities.

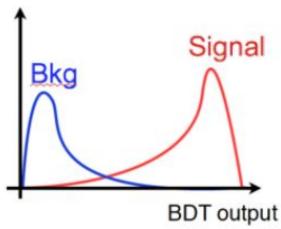
Typical methods of AI

- The methods used to train the AI model can be categorized as
 - Supervised learning
 - Unsupervised learning

Supervised Learning

- The right answer is given in the training data ('labeled')
 - E.g. Train a boosted decision tree (BDT) with data labeled as signal and background

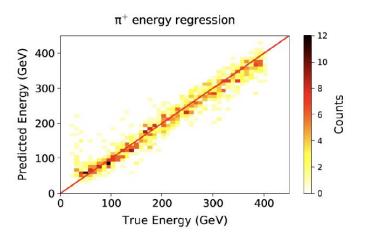
Classification: to make *discrete* predictions (True/False, Signal/Background, Type I/II/III Supernovae, etc.)



Supervised Learning

- The right answer is given in the training data ('labeled')
 - E.g. Given the performance of the calorimeter, what is the true energy of a particle corresponding to a certain measured value.

Regression: to make *continuous* estimation



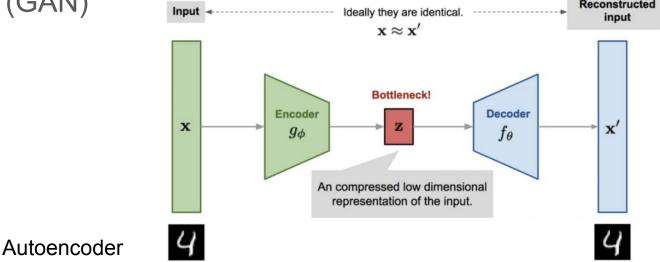
Unsupervised Learning

The right answer is **not** given in the training data ('unlabeled')
 E.g. Given the observation, divide the stars into different groups

Clustering: The groups are not known beforehand. Try to find the underlying structure of data.

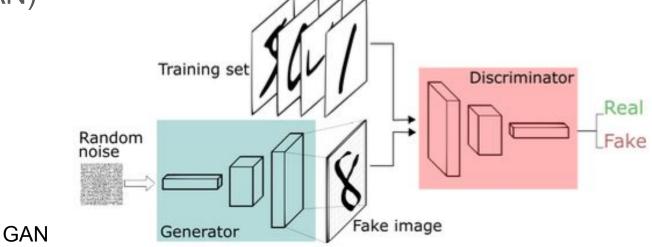
Unsupervised Learning

 Generative models: Generate (new/fake) data that look like input/training data. E.g. Autoencoders, Generative Adversarial Network (GAN)



Unsupervised Learning

 Generative models: Generate (new/fake) data that look like input/training data. E.g. Autoencoders, Generative Adversarial Network (GAN)



Machine Learning

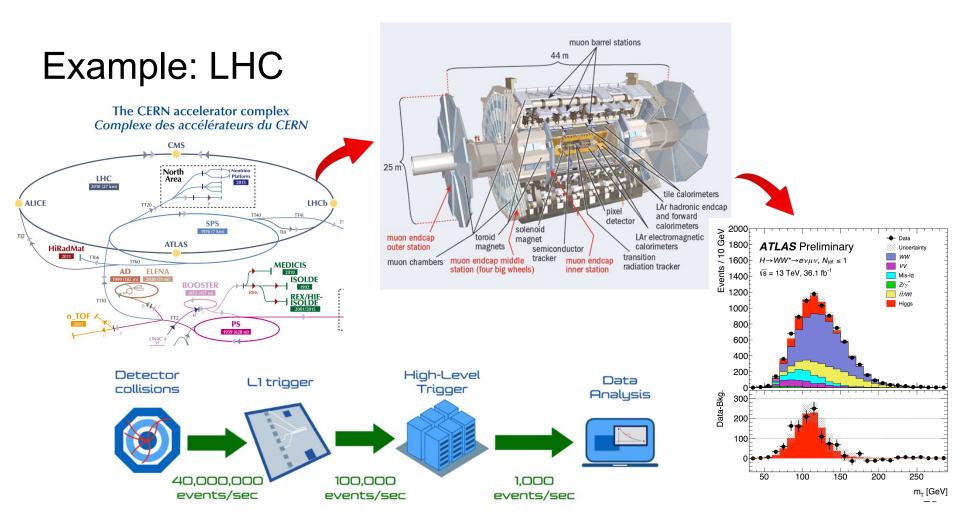
- Key ideas: identify a problem you want to solve, and learn from data
 - Domain knowledge: Understand what the problem is, and what information are needed to solve the problem
 - To apply Al/Machine learning to particle physics, you should first be a 'domain expert' of particle physics!

What does Particle Physics need?

Particle Physics

• Particle physics is a broad topic. Focus on experimental particle physics, in particular collider physics, for this lecture.

Example: Large Hadron Collider (LHC) Experiments



Needs of Particle Physics

- Produce the data
- Acquire the data
- Clean the data
- Manage the data
- Reconstruct the data
- Simulate the data
- Analyze the data
- Find the theory behind the data

We can make use of Al in all these areas!

What can AI do for Particle Physics?

Applications of AI in Particle Physics

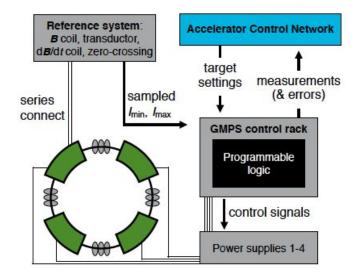
Due to limited time only a few selected examples are presented.
 More information (live update) at <u>HEPML-LivingReview</u>

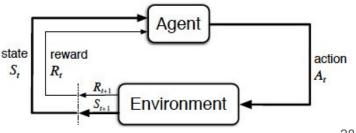
Production of data

- We use accelerators to speed up the particle beams, collide them at designated points, and measure the scattering particles.
- We use AI/machine learning to
 - Predict and avoid equipment failures
 - Control the beams and optimize the quality of the beams

Production of data

- R&D going on: how to run accelerators in a more efficient, more reliable, and possibly even autonomous way?
- E.g. Reinforcement learning to regulate power supply at Fermilab





arXiv:2011.07371

Acquisition of data

- Data production rate at collider experiments are so high (e.g. ~40 TB/s at the LHC) that one cannot save all the data recorded.
- Rely on trigger systems to filter events to a manageable amount for storage. Challenge: How to make sure we've kept the 'interesting' events?
 - Al can help!

Acquisition of data

• Example: Muon Trigger at CMS

 Need to predict momentum of muons correctly while keep the event rate as low as possible.

- A regression tasks with many features

ML Model = Boosted Decision Tree
Used in 2016/2017 data taking.

$$\begin{array}{c|c} \underline{\mathsf{https://indico.cern.ch/event/638056/}} \ \text{talk by A. Carnes} \\ & & & \\ 00000000 \rightarrow & & \\ 00000001 \rightarrow & & \\ 00000001 \rightarrow & & \\ \mathbf{ML} \\ & & & \\ \mathbf{Model} \\ \mathbf{Model} \\ \mathbf{Pt(000000001)} \\ & & & \\ \mathbf{Pt in 16 bits} \\ \end{array}$$

II Possibilitie

Data Quality Monitoring

- Need to use high quality data, i.e. data recorded by a 'healthy' detector, for subsequent physics and performance analyses.
- Important to spot detector issues in real time to avoid taking low-quality data → Data Quality Monitoring is crucial.
- Complicated sub-detectors/sub-systems involved. Can AI help?

source

Data Quality Monitoring

• Example: Anomaly detection with autoencoder for data quality monitoring in the CMS experiment

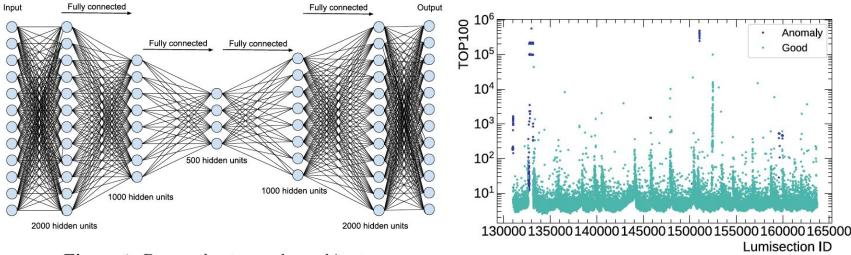
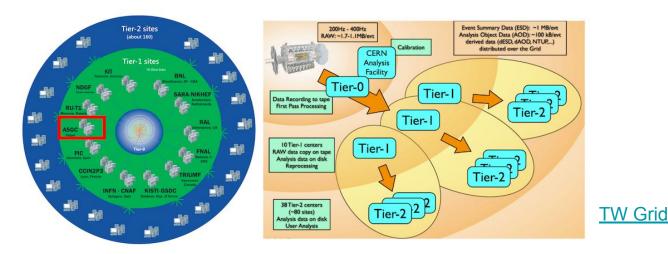


Figure 1. Proposed autoencoder architecture.

https://doi.org/10.1051/epjconf/201921406008

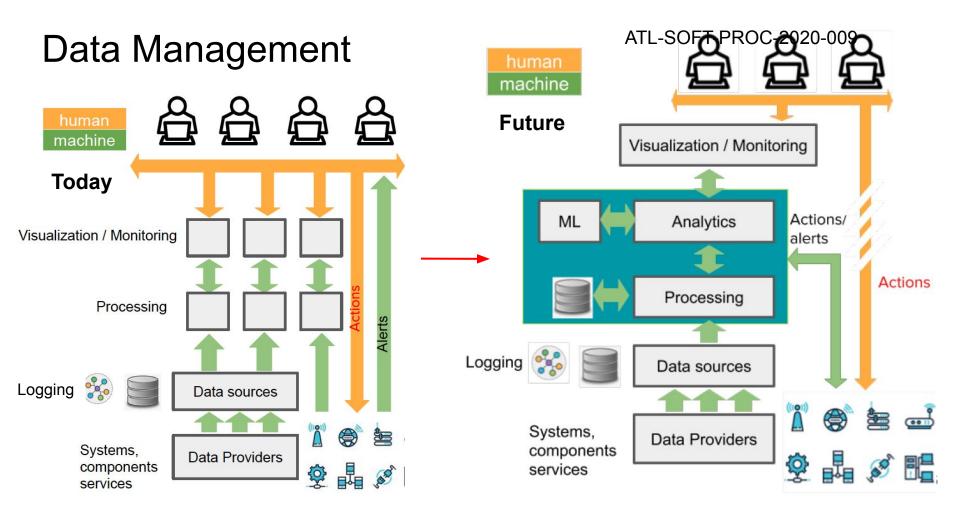
Data Management

- LHC experiments rely on the worldwide computing grid for data storage, distribution, access, and processing.
 - AS Grid computing center is one of the Tier-1 grid sites



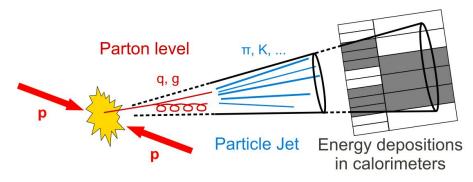
Data Management

- Grid maintenance is persen-power demanding. → Use AI to improve efficiency and reduce human effort.
- Example: <u>The Operational Intelligence project</u> (a joint effort across the LHC worldwide grid communities).



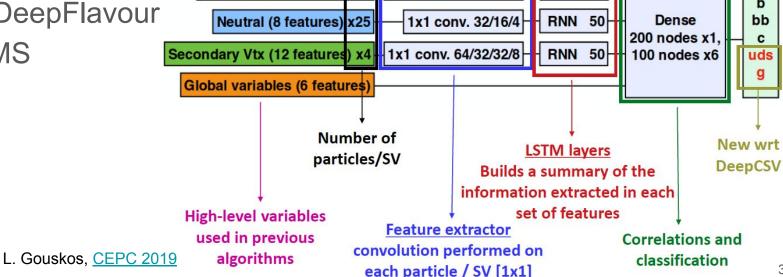
Reconstruction of Data

- How to identify the particles created from collision using information recorded by the detector?
- E.g. Jet = a cone of reconstructed particles. What's its origin?
 Quark (which flavor)? Gluon? Hadron? → Flavor Tagging



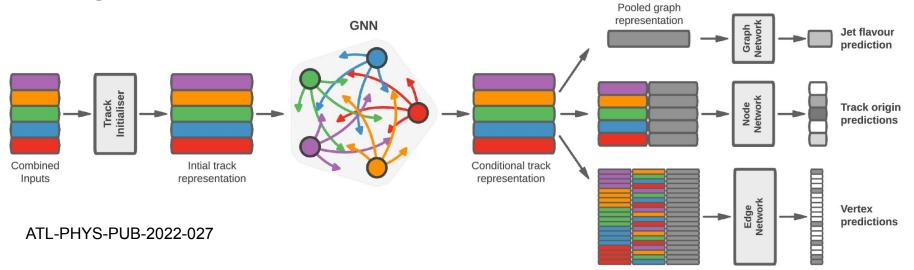
Reconstruction of Data

Treat a jet as a sequence of constituent particles and use Deep neural networks, Charged (16 features) x25 1x1 conv. 64/32/32/8 **RNN 150** b e.g. DeepFlavour Neutral (8 features) x25 1x1 conv. 32/16/4 **RNN 50** Dense 200 nodes x1. C in CMS Secondary Vtx (12 features) x4 1x1 conv. 64/32/32/8 **RNN 50** 100 nodes x6



Reconstruction of Data

• Treat a jet as a graph and make use of Graph Neural Network. E.g. GN1 in ATLAS



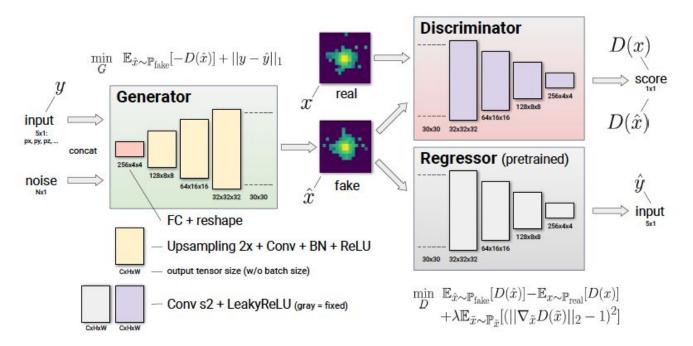
Simulation of Data

- We rely on simulated data to compare real collision data with known physics.
- Need to accurately describe the underlying physics and detector responses. → Computationally expensive.
- Idea: train a generative model, and use it as a statistical model embedded with high-level detector response.

Simulation of Data

• Example: GAN for LHCb fast simulation

arXiv:2003.09762



Simulation of Data

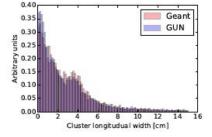
• Example: GAN for LHCb fast simulation 0.8 0.7 9.6 0.5 0.5 0.5 0.2 0.2 0.2 0.1 0.0

6

8

arXiv:2003.09762

10



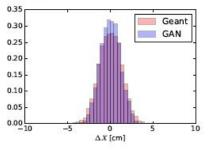
(a) The transverse width of clusters.

Cluster trasverse width [cm]

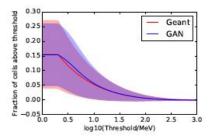
4

2

0



(b) The longitudinal width of clusters.

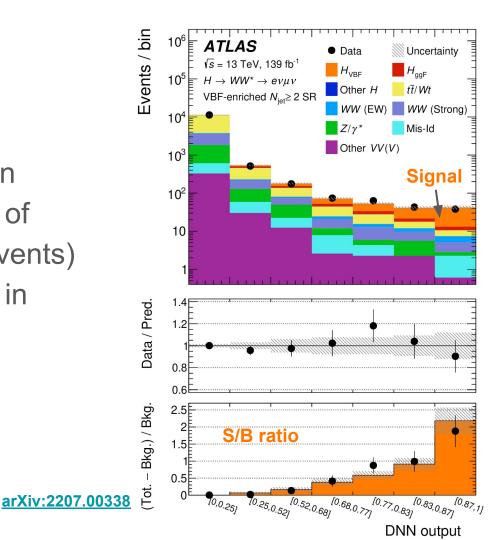


(d) The sparsity in the 30x30 cells matrix containing clusters.

(c) ΔX between cluster centre of mass and the true particle coordinate.

Analysis of Data

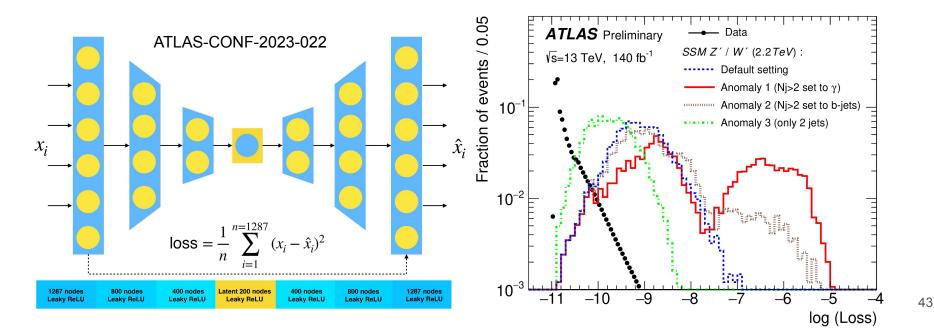
AI is extremely effective in classification (separation of signal and background events)
 → extensive use of DNN in analysis.



42

Analysis of Data

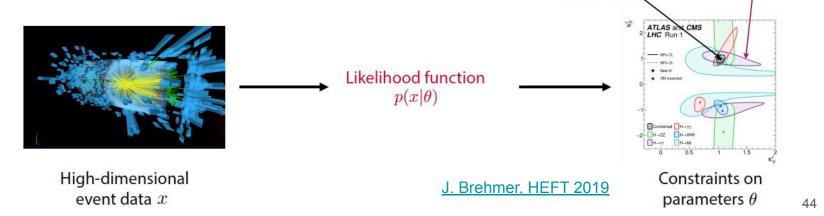
Model-independent search: Anomaly detection



Theory behind the Data

• The main part of data analysis in HEP is to do hypothesis test: does it look more like the SM/background ('hypothesis 0') or the signal/new physics ('hypothesis 1')? Confidence limits based Maximum-likelihood

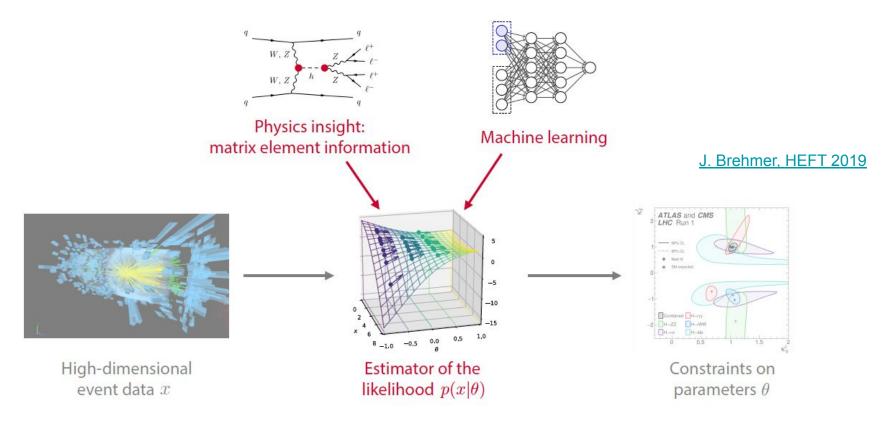
Need to evaluate the likelihood



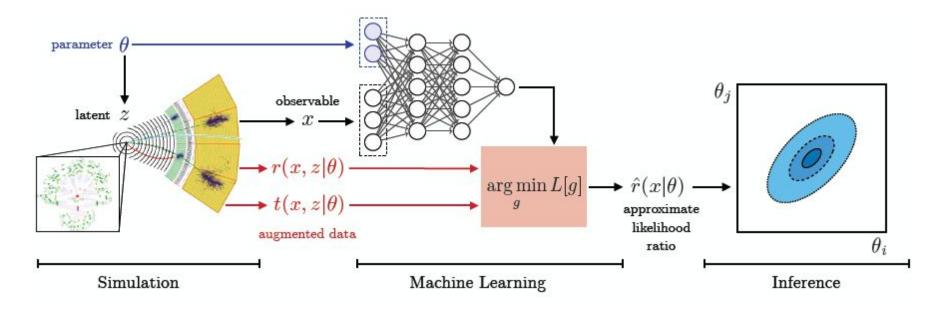
on likelihood ratio tests

estimator

Theory behind the Data



Theory behind the Data



arXiv:1805.00013

Take-home message

- High energy experiments are full of big data, and opportunities for computing intensive innovations. → Rapid growth of AI applications in particle physics.
- More R&D ongoing: how to make use of symmetries (of the experimental setup and the underlying physics), how to keep systematics under control, how to better understand/explain results obtained by AI, etc. → Exciting AI+Physics era ahead!