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e \What is Atrtificial Intelligence (Al)?
e \What can Al do?
e \What does Particle Physics need?

e \What can Al do for Particle Physics?



Ma
Ch i
he Le 3 'hin
g?

What is Al?

Deep Learning”



1950's —|-
ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

1980's —
MACHINE LEARNING

Algorithms whose performance improve

as they are exposed to more data over time

2010’'s | DEEP
LEARNING

Subset of machine learning in
which multilayered neural
networks learn from
vast amounts of data

techplusmedia



https://techplusmedia.com/education/2019/04/04/how-is-natural-language-processing-different-from-ai-ml-and-dl/

Artificial Intelligence (Al)

e The science of training machines to perform human tasks

o Understand human speech
o Pattern/image recognition
o Play strategic games (e.g. GO, chess)

o Drive cars

e An ‘old’ idea since 1950’s



Machine Learning

e A subfield of Al which trains machine how to learn from data
without being explicitly programmed
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Classical Machine Learning vs Deep Learning

Source: https://blog.dataiku.com/ MaCh ine Learn | ng
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Classical Machine Learning vs Deep Learning

e ‘Classical’ machine learning typically refers to ‘simple’ models
like decision trees, support vector machines, etc.
e Deep learning involves the use of artificial neural networks.

A simple neural network
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Neural networks

e Different architectures and algorithms for various purposes.
o Deep neural networks (DNN): versatile networks with many
hidden layers (and neurons).

Deep Neural Network
source
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Figure 12.2 Deep network architecture with multiple layers.


https://towardsdatascience.com/training-deep-neural-networks-9fdb1964b964

Neural networks

e Different architectures and algorithms for various purposes.

o Convolutional neural networks (CNN): Powerful tool for
processing images
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https://www.nature.com/articles/s41467-021-23952-w

Neural networks

e Different architectures and algorithms for various purposes.
o Recurrent neural networks (RNN): ‘backward’ information
flow; suitable for analyzing sequential data (like languages)
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https://en.wikipedia.org/wiki/Recurrent_neural_network

What can Al do?



Typical Tasks of Al

e Al models are built for specific tasks. For example,

— Classification: Make discrete predictions (classify samples as
True/False, or different categories.)

— Regression: Make continuous predictions (given a feature X,
predict the value of another feature Y).

— Clustering: Separate data into different groups according to
their similarities.
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Typical methods of Al

e The methods used to train the Al model can be categorized as
— Supervised learning

— Unsupervised learning
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Supervised Learning

e The right answer is given in the training data (‘labeled’)

E.g. Train a boosted decision tree (BDT) with data labeled as
signal and background

A
Classification: to make discrete Signal
predictions (True/False, Bkg
Signal/Background,
Type I/II/lIl Supernovae, etc.)

>
BDT output
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Supervised Learning

e The right answer is given in the training data (‘labeled’)

E.g. Given the performance of the calorimeter, what is the true
energy of a particle corresponding to a certain measured value.

" energy regression
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Unsupervised Learning

e The right answer is not given in the training data (‘unlabeled’)

E.g. Given the observation, divide the stars into different groups

Clustering: The groups are not
known beforehand. Try to find
the underlying structure of data.
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Unsupervised Learning

e Generative models: Generate (new/fake) data that look like
input/training data. E.g. Autoencoders, Generative Adversarial
Network (GAN) B . o\l iy ero onioal —eoeeeeeeeeeeoe . Reconstructed

Ideally they are identical. input
x ~x

An compressed low dimensional
representation of the input.

Autoencoder 8




Unsupervised Learning

e Generative models: Generate (new/fake) data that look like
input/training data. E.g. Autoencoders, Generative Adversarial

Network (GAN)
Training set
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Machine Learning

e Key ideas: identify a problem you want to solve, and learn from
data
o Domain knowledge: Understand what the problem is, and
what information are needed to solve the problem
o To apply Al/Machine learning to particle physics, you should
first be a ‘domain expert’ of particle physics!
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What does Particle Physics need?



Particle Physics

e Particle physics is a broad topic. Focus on experimental particle
physics, in particular collider physics, for this lecture.

Example: Large Hadron Collider (LHC) Experiments
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muon barrel stations

Example: LHC
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Needs of Particle Physics

Produce the data
Acquire the data
Clean the data
Manage the data
Reconstruct the data
Simulate the data
Analyze the data

Find the theory behind the data
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We can make use of Al
in all these areas!
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What can Al do for Particle Physics?



Applications of Al in Particle Physics

e Due to limited time only a few selected examples are presented.
More information (live update) at HEPML-LivingReview
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https://github.com/iml-wg/HEPML-LivingReview

Production of data

e \We use accelerators to speed up the particle beams, collide them
at designated points, and measure the scattering particles.

e Ve use Al/machine learning to

— Predict and avoid equipment failures
— Control the beams and optimize the quality of the beams
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arXiv:2011.07371
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Production of data

e R&D going on: how to run accelerators
in a more efficient, more reliable, and
possibly even autonomous way? e
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Acquisition of data

e Data production rate at collider experiments are so high (e.g. ~40
TB/s at the LHC) that one cannot save all the data recorded.

e Rely on trigger systems to filter events to a manageable amount
for storage. Challenge: How to make sure we've kept the

‘interesting’ events?
— Al can help!
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Acquisition of data

e Example: Muon Trigger at CMS
— Need to predict momentum of muons correctly while keep the

event rate as low as possible.
— A regression tasks with many features

https://indico.cern.ch/event/638056/ talk by A. Carnes
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https://indico.cern.ch/event/638056/

Data Quality Monitoring

e Need to use high quality data, i.e. data recorded by a ‘healthy’
detector, for subsequent physics and performance analyses.

e Important to spot detector issues in real time to avoid taking
low-quality data — Data Quality Monitoring is crucial.

e Complicated sub-detectors/sub-systems
involved. Can Al help?

source


https://atlas.cern/updates/news/impressions-control-room

Data Quality Monitoring

https://doi.org/10.1051/epjconf/201921406008

e Example: Anomaly detection with autoencoder for data quality
monitoring in the CMS experiment
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Figure 1. Proposed autoencoder architecture.


https://doi.org/10.1051/epjconf/201921406008

Data Management

e LHC experiments rely on the worldwide computing grid for data
storage, distribution, access, and processing.
— AS Grid computing center is one of the Tier-1 grid sites

TW Grid
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https://www.twgrid.org/wordpress/index.php/large-hadron-collider-lhc-experiments-atlas-and-cms-and-wlcg/

Data Management

e Grid maintenance is persen-power demanding. — Use Al to
improve efficiency and reduce human effort.

e Example: The Operational Intelligence project (a joint effort across
the LHC worldwide grid communities).
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https://operational-intelligence.web.cern.ch
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Reconstruction of Data

e How to identify the particles created from collision using
information recorded by the detector?

e E.g. Jet = a cone of reconstructed particles. What's its origin?
Quark (which flavor)? Gluon? Hadron”? — Flavor Tagging

Parton level

\ Particle Jet Energy depositions
P in calorimeters
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Reconstruction of Data

e Treat a jet as a sequence of constituent particles and use Deep

neural networks,

e.g. DeepFlavour
in CMS

L. Gouskos, CEPC 2019
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https://indico.cern.ch/event/783429/

Reconstruction of Data

e Treat ajet as a graph and make use of Graph Neural Network.
E.g. GN1in ATLAS
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Simulation of Data

e \We rely on simulated data to compare real collision data with
kKnown physics.

e Need to accurately describe the underlying physics and detector
responses. — Computationally expensive.

e |dea: train a generative model, and use it as a statistical model
embedded with high-level detector response.
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Simulation of Data

e Example: GAN for LHCDb fast simulation ArXiv:2003.09762
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Simulation of Data

e Example:
GAN for LHCD fast simulation

arXiv:2003.09762
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https://arxiv.org/abs/2207.00338

Analysis of Data

e Model-independent search: Anomaly detection

ATLAS-CONF-2023-022

n=1287
PINCEEE

Latent 200 nodes
Leaky ReLU

Fraction of events / 0.05

T T 1rr1r111Qg

4

T IIIIIIII

T IIIIIII|
[ ]

—e— Data
SSMZ| W’ (2.2TeV):
Default setting

I|IIII|IIII|IIII|IIII|IIII|IIIIIIII

ATLAS Preliminary
Vs=13 TeV, 140 fo’'
Anomaly 1 (Nj>2 set to y)

Anomaly 2 (Nj>2 set to b-jets)
Anomaly 3 (only 2 jets)

&n
L:

log (Loss)

43



Theory behind the Data

e The main part of data analysis in HEP is to do hypothesis test:
does it look more like the SM/background (‘hypothesis 0’) or the
signal/new physics (‘hypothesis 1°)7? TN
— Need to evaluate the likelihood i L

Likelihood function

_
0 e
H [ . |
High-dimensional J. Brehmer. HEFT 2019 Constraints on

event data « parameters 6 44


https://agenda.irmp.ucl.ac.be/event/3283/contributions/3930/

Theory behind the Data

Physics insight:
matrix element information

“ ATLAS and CMS
2 LHC Run 1

Constraints on
parameters f

Estimator of the
likelihood p(z|@)

High-dimensional
event data x

J. Brehmer, HEFT 2019
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https://agenda.irmp.ucl.ac.be/event/3283/contributions/3930/

Theory behind the Data
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Take-home message

e High energy experiments are full of big data, and opportunities for
computing intensive innovations. — Rapid growth of Al
applications in particle physics.

e More R&D ongoing: how to make use of symmetries (of the
experimental setup and the underlying physics), how to keep
systematics under control, how to better understand/explain
results obtained by Al, etc. — Exciting Al+Physics era ahead!
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