Cosmology for Particle Physicists Axions - inflation, primordial black holes, chiral gravitational waves, and cosmic birefringence

Kin-Wang Ng (吳建宏)

Institute of Physics & Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan

PIRE GEMADARC Summer School 2023

May 24 – May 30, 2023 ASIoP, Taipei, Taiwan

Outline

- Axions with mass and breaking scale (m_a,f_a)
- Assume an axion-photon coupling aFF
- Cosmic birefringence due to axionic dark matter / dark energy / string-wall networks and CMB B-mode polarization
- Axion inflation PBH seeds and chiral gravitational waves
- Conclusion

Ultralight axion constraints from experiments, astrophysics, and cosmology

Search for Dark Photon (massive almost-charge-blind photon-like particles)

The Hot Big Bang Model

Cosmic Budget

What is CDM? Weakly interacting but can gravitationally clump into halos

What is DE?? Inert, smooth, anti-gravity!!

Axion-like DE and CDM

(too many references to list)

- Weak equivalence principle plus spin dictates a universal pseudoscalar (Ni 77)
- There exists at least one fundamental scalar the Higgs boson !
- Axion monodromy large-field inflation
- Peccei-Quinn symmetry breaking QCD axion CDM
- Problems in small-scale structures 10⁻²² eV scalar (maybe pseudoscalar) fuzzy CDM
- String axiverse a plentitude of axions with a vast mass range 10⁻³³ eV - 10⁻¹⁰ eV
- Extended string axiverse axions as DE

Cosmic Expansion Equations and Cosmological Parameters

The goal of modern cosmology is to determine the cosmological parameters h, k, Ω_M , Ω_{DE} ...where matter contains baryons, cold dark matter, neutrinos, photons...

accelerationtotal pressure
$$H_0=100 \text{ h km s}^{-1} \text{ Mpc}^{-1}$$
 $\ddot{R} / R = -4\pi G (\rho_M + \rho_{DE} + 3p_M + 3p_{DE}) / 3$ de-acceleration parameter
 $q \equiv -\ddot{R}R / \dot{R}^2$ $2q = \Omega_M (1+3w_M) + \Omega_{DE}(1+3w_{DE})$ equation of state $w \equiv p / \rho$

 $\Omega_{M} \approx \Omega_{CDM} = 0.25$, $W_{CDM} \approx 0$; $\Omega_{DE} \approx \Omega_{\Lambda} = 0.7$, $W_{\Lambda} \approx -1 \implies q < 0$ Universe is accelerating !!

$m^2 \phi^2, \lambda \phi^4$	Frieman et al (1995)
$V_0/\phi^{\alpha}, \alpha > 0$	Ratra & Peebles (1988)
$V_0 \exp{(\lambda \phi^2)}/\phi^{\alpha}$	Brax & Martin (1999,2000)
$V_0(\cosh\lambda\phi-1)^p$	Sahni & Wang (2000)
$V_0 \sinh^{-\alpha} (\lambda \phi)$	Sahni & Starobinsky (2000), Ureña-López & Matos (2000)
$V_0(e^{\alpha\kappa\phi} + e^{\beta\kappa\phi})$	Barreiro, Copeland & Nunes (2000)
$V_0(\exp M_p/\phi - 1)$	Zlatev, Wang & Steinhardt (1999)
$V_0[(\phi - B)^{\alpha} + A]e^{-\lambda\phi}$	Albrecht & Skordis (2000)

CMB Anisotropy and Polarization

- On large angular scales, matter imhomogeneities generate gravitational redshifts
- On small angular scales, acoustic oscillations in plasma on last scattering surface generate Doppler shifts
- Thomson scatterings with electrons generate polarization

CMB Measurements

- Point the telescope to the sky
- Measure CMB Stokes parameters:

$$T = T_{CMB} - T_{mean}$$

 $Q = T_{EW} - T_{NS}, U = T_{SE-NW} - T_{SW-NE}$

- Scan the sky and make a sky map
- Sky map contains CMB signal, system noise, and foreground contamination including polarized galactic and extra-galactic emissions
- Remove foreground contamination by multi-frequency subtraction scheme
- Obtain the CMB sky map

CMB Anisotropy and Polarization Angular Power Spectra

Decompose the CMB sky into a sum of spherical harmonics: $T(\theta, \phi) = \sum_{lm} a_{lm} Y_{lm}(\theta, \phi)$ $(Q - iU) (\theta, \phi) = \sum_{lm} a_{2,lm} {}_{2}Y_{lm} (\theta, \phi)$ $(Q + iU) (\theta, \phi) = \Sigma_{lm} a_{-2,lm} Y_{lm} (\theta, \phi)$ $C_{l}^{TT} = \Sigma_m (a_{lm}^* a_{lm})$ Anisotropy power spectrum I = 180 degrees/ θ $C^{EE}_{l} = \sum_{m} (a^*_{2,lm} a_{2,lm} + a^*_{2,lm} a_{2,lm})$ E-polarization power spectrum $C^{BB}_{l} = \sum_{m} (a_{2,lm}^{*} a_{2,lm}^{*} - a_{2,lm}^{*} a_{-2,lm}^{*}) B$ -polarization power $C_{l}^{TE} = -\Sigma_{m} (a_{lm}^{*} a_{2.lm}^{*})$ TE correlation power spectrum magnetic-type electric-type (Q,U)/___`| $\frac{1}{2}$

Latest report on CMB measurements

DE/DM Coupling to Electromagnetism

$$\mathcal{L}_N = -\frac{1}{4}\sqrt{-g}B_{F\tilde{F}}(\phi)F_{\mu\nu}\tilde{F}^{\mu\nu}\,,\quad\text{where}\quad\phi\equiv\frac{\Phi}{M}\,,\qquad M=M_{Pl}/\sqrt{8\pi}$$

This leads to photon dispersion relation ^{Carroll, Field,} Jackiw 90

 $n_{\pm} = \varepsilon \mp \frac{1}{2} \frac{\partial B_{F\tilde{F}}}{\partial \phi} \left(\frac{\partial \phi}{\partial \eta} + \vec{\nabla} \phi \cdot \hat{n} \right)_{\pm \text{ left/right handed } \eta \text{ conformal time}}^{(\varepsilon, \vec{n}) \text{ is the photon four-momentum}}$

vacuum birefringence

then, a rotational speed of polarization plane

$$\omega = \frac{1}{2}(n_{+} - n_{-}) = -\frac{1}{2}\frac{\partial B_{F\tilde{F}}}{\partial\phi}\left(\frac{\partial\phi}{\partial\eta} + \vec{\nabla}\phi\cdot\hat{n}\right)$$

If B= $\beta \phi$, cooling of horizontal branch stars would imply $\beta < 10^7$

For homogenous field $\phi(t)$, cosmic birefringence induces a constant rotation angle α

ical birefringence". The rotated angle of the polarization direction for an observed source would then be given by

$$\bar{\alpha} = \int_{z}^{0} \bar{\omega}(\eta) d\eta = -\frac{1}{2} \beta_{F\tilde{F}} \Delta \bar{\phi}, \qquad (25)$$

where $\Delta \overline{\phi}$ is the change in $\overline{\phi}$ between the redshift z of the source and today. Measure-

Hints of Cosmic Birefringence?

November 23, 2020 • *Physics* 13, s149

A new analysis of the cosmic microwave background shows that its polarization may be rotated by exotic effects indicating beyond-standard-model physics.

Y. Minami/KEK

Rotation angle $lpha = -0.342^{\circ +0.094^{\circ}}_{-0.091^{\circ}} (68\% \text{ CL})$ Planck 2018 polarization data," Phys. Rev. Lett. 125, 221301 (2020).

Systematics?

Y. Minami and E. Komatsu, "New extraction of the cosmic birefringence from the

B. Feng, M. Li, J.-Q. Xia, X. Chen, and X. Zhang, Phys. Rev. Lett. 96, 221302 (2006).

We Tried Many Scalar Dark Energy Models

DE mean field induced vacuum birefringence – CMB photon $\operatorname{Photon}^{\operatorname{CMB}} \operatorname{photon}^{\operatorname{CMB}} \operatorname{photon}^{\operatorname$

Parity violating EB,TB cross power spectra – cosmic parity violation

Including Dark Energy Perturbation

$$\begin{split} & \text{Dark energy} \\ & \text{perturbation} \quad \phi(\eta, \vec{x}) = \bar{\phi}(\eta) + \delta \phi(\eta, \vec{x}) \quad \delta \phi(\eta, \vec{x}) = \frac{1}{\sqrt{(2\pi)^3}} \int \delta \phi(\vec{k}', \eta) e^{i\vec{k}'\cdot\vec{x}} d^3k' \\ & \text{time and space} \\ & \text{dependent rotation} \quad \omega = -\frac{1}{2} \frac{\partial B_{F\tilde{F}}}{\partial \phi} \left(\frac{\partial \phi}{\partial \eta} + \vec{\nabla} \phi \cdot \hat{n} \right) \\ & \dot{\Delta}_{Q\pm iU}(\vec{k}, \eta) + ik\mu \Delta_{Q\pm iU}(\vec{k}, \eta) = n_e \sigma_T a(\eta) \left[-\Delta_{Q\pm iU}(\vec{k}, \eta) \times \right] \\ & \sum_m \sqrt{\frac{6\pi}{5}} \pm 2Y_2^m(\hat{n}) S_P^{(m)}(\vec{k}, \eta) \right] \mp i2 \frac{1}{\sqrt{(2\pi)^3}} \int d\vec{k}' \, \tilde{\omega}(\vec{k} - \vec{k}', \eta) \Delta_{Q\pm iU}(\vec{k}', \eta) \\ & \tilde{\omega}(\vec{k}, \eta) = -\frac{1}{2} \frac{\partial B_{F\tilde{F}}}{\partial \phi} \left[\delta \phi_{\vec{k}}(\eta) + i\vec{k} \cdot \hat{n} \, \delta \phi_{\vec{k}}(\eta) \right] \end{split}$$

- Perturbation induced polarization power spectra in general quintessence models are small
- Interestingly, in nearly ACDM models (no time evolution of the mean field), birefringence generates <BB> while <TB>=<EB>=0

Axion (m~10⁻²²eV) CDM curvature perturbation

Ultra-light Axionic string-wall networks

Axion Inflation

We consider a version of the trapped inflation driven by a pseudoscalar φ that couples to a U(1) gauge field A_{μ} :

$$S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{\alpha}{4f} \varphi \tilde{F}^{\mu\nu} F_{\mu\nu} \right], \qquad (3)$$

Sorbo, Barnaby, Namba, Peloso, Meerburg, Pager, Unal,....

 $\varphi = \phi(\eta) + \delta \varphi(\eta, \vec{x})$

 $d\eta = dt/a$

 $k/(aH) < 2|\xi|$

Spinoidal

instability

Under the temporal gauge, $A_{\mu} = (0, \vec{A})$, we decompose $\vec{A}(\eta, \vec{x})$ into its right and left circularly polarized Fourier modes, $A_{\pm}(\eta, \vec{k})$, whose equation of motion is then given by

$$\left[\frac{d^2}{d\eta^2} + k^2 \mp 2aHk\xi\right] A_{\pm}(\eta, k) = 0, \quad \xi \equiv \frac{\alpha}{2fH} \frac{d\phi}{dt}.$$
 (5)

$$\begin{split} &\frac{d^2\phi}{dt^2} + 3H\frac{d\phi}{dt} + \frac{dV}{d\phi} = \frac{\alpha}{f}\langle \vec{E}\cdot\vec{B}\rangle,\\ &3H^2 = \frac{1}{M_p^2}\left[\frac{1}{2}\left(\frac{d\phi}{dt}\right)^2 + V(\phi) + \frac{1}{2}\langle \vec{E}^2 + \vec{B}^2\rangle\right] \end{split}$$

$$\begin{split} \langle \vec{E} \cdot \vec{B} \rangle &\simeq -2.4 \cdot 10^{-4} \frac{H^4}{\xi^4} \, \mathrm{e}^{2\pi\xi}, \\ \left\langle \frac{\vec{E}^2 + \vec{B}^2}{2} \right\rangle &\simeq 1.4 \cdot 10^{-4} \frac{H^4}{\xi^3} \, \mathrm{e}^{2\pi\xi}. \end{split} \quad \frac{1}{2} \langle \vec{E}^2 + \vec{B}^2 \rangle = \int \frac{dk \, k^2}{4\pi^2 a^4} \sum_{\lambda = \pm} \left(\left| \frac{dA_\lambda}{d\eta} \right|^2 + k^2 |A_\lambda|^2 \right), \\ \langle \vec{E} \cdot \vec{B} \rangle &= -\int \frac{dk \, k^3}{4\pi^2 a^4} \frac{d}{d\eta} \left(|A_+|^2 - |A_-|^2 \right). \end{split}$$

Background

 $\beta \equiv 1 - 2\pi\xi \frac{\alpha}{f} \frac{\langle \vec{E} \cdot \vec{B} \rangle}{3H(d\phi/dt)}$

$$\frac{\text{Perturbation}}{\left[\frac{\partial^2}{\partial t^2} + 3\beta H \frac{\partial}{\partial t} - \frac{\vec{\nabla}^2}{a^2} + \frac{d^2 V}{d\phi^2}\right] \delta\varphi(t, \vec{x}) = \frac{\alpha}{f} \left(\vec{E} \cdot \vec{B} - \langle \vec{E} \cdot \vec{B} \rangle\right)$$

$$\delta \varphi = \frac{\alpha}{3\beta f H^2} \left(\vec{E} \cdot \vec{B} - \langle \vec{E} \cdot \vec{B} \rangle \right)$$

 $\Delta_{\zeta}^2(k) = \langle \zeta(x)^2 \rangle = \frac{H^2 \langle \delta \varphi^2 \rangle}{(d\phi/dt)^2} = \left[\frac{\alpha \langle \vec{E} \cdot \vec{B} \rangle}{3\beta f H (d\phi/dt)} \right]^2$

e.g. Axion inflation with a steep potential Cheng, Lee, Ng 16

all rescaled by M_p

Associated Chiral Gravitational Waves in Axion Inflation

Production of PBHs realized in axion monodromy inflation with sinusoidal modulations

Chiral GWs associated with PBHs in modulated axion inflation

GWB Anisotropy and Polarization Angular Power Spectra

Decompose the GWB sky into a sum of spherical harmonics: $T(\theta,\phi) = \Sigma_{lm} a_{lm} Y_{lm}(\theta,\phi), V(\theta,\phi) = \Sigma_{lm} b_{lm} Y_{lm}(\theta,\phi)$ $(Q - iU) (\theta, \phi) = \Sigma_{lm} a_{4.lm} {}_{4}Y_{lm} (\theta, \phi)$ $(Q + iU) (\theta, \varphi) = \Sigma_{lm} a_{-4 lm} Y_{lm} (\theta, \varphi)$ $C_{l}^{T} = \Sigma_{m} (a_{lm}^{*} a_{lm})$ anisotropy power spectrum I = 180 degrees/ θ $C_{l}^{V} = \Sigma_{m} (b_{lm}^{*} b_{lm})$ circular polarization power spectrum $C_{l}^{E} = \Sigma_{m} (a_{4,lm}^{*} a_{4,lm}^{+} a_{4,lm}^{*} a_{-4,lm}^{-}) E$ -polarization power spectrum $C_{l}^{B} = \Sigma_{m} (a_{4,lm}^{*} a_{4,lm} - a_{4,lm}^{*} a_{-4,lm}) B$ -polarization power spectrum magnetic-type electric-type (Q,U)| - - |

Current gravitational-wave detectors

LIGO-Virgo-KAGRA Collaboration

Refer to Yuki Inoue's talk

ASIOP has joined LIGO and KAGRA

Concluding remarks

 T. D. Lee and C. N. Yang, C. S. Wu 1957

> Parity symmetry is broken in sub -atomic world - weak interaction is left-handed

- Is there any parity violation in the cosmos on the sky?
 CMB polarization, chiral GWs
- Search for Cosmic Parity Violation via axions