

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

A Tale of Two Axion Searches Reyco Henning University of North Carolina at Chapel Hill Triangle Universities Nuclear Laboratory

Reyco Henning

Outline

- Brief History and Motivation for Axions
- ABRACADABRA
 - Concept
 - Results from 10cm prototype
 - Future Plans
- MAJORANA DEMONSTRATOR
 - Neutrinoless Double Beta Decay
 - Experimental Description
 - Searches for Bosonic Dark Matter
- Conclusions

Evidence for Dark Matter is Gravitational

- Galactic Rotation Curves
- Peculiar velocities of galaxies in clusters
- X-Ray emission of hot gas in clusters.
- Weak gravitational lensing
- Cosmic Microwave background (indirect)
- Big Bang Nucleosynthesis predicts it cannot be baryonic

DM Candidates

DM Candidates

Reyco Henning

Original Axion Motivation: Strong CP Problem

- Strong interaction does not intrinsically conserve CP
- Neutron should have Electric Dipole Moment $d_n \sim 10^{-15}$ e.cm
- Experimentally $d_n < 1.8 \times 10^{-26}$ e.cm Phys. Rev. Lett. 124, 8, 081803 (2020)
- Requires "unpleasant" fine-tuning of QCD set arbitrary CP violating phase equal to effectively zero.
- Hint at new physics mechanism?

Peccei-Quinn Mechanism

- Trivial explanation: One quark is massless. Inconsistent with experiment.
- Spontaneous Symmetry breaking at high mass scale (*f_a*) leads to CP conservation.
 PRL 38, 1440 (1977); PRD 16, 1791 (1977)
- Wilczek & Weinberg: Leads to new particle: Axion PRL 40, 223 (1978); PRL 40, 279 (1978).
- Discover Axion, solve Strong CP problem

MIT

nobelprize.org

Axion can also be DM

Reyco Henning

QCD Axion Properties

$$m_{\rm a} \simeq 0.6 \,\mathrm{eV} \frac{10^7 \,\mathrm{GeV}}{f_{\rm a}}$$

f_a : PQ Symmetry Breaking Scale Relationship Model-dependent

QCD Axion Properties

$$m_{\rm a} \simeq 0.6 \,\mathrm{eV} \frac{10^7 \,\mathrm{GeV}}{f_{\rm a}}$$

f_a : PQ Symmetry Breaking Scale Relationship Model-dependent

Axion Experimental Landscape

Axions-like particles (ALPS) arise naturally in string theories.

Do not solve Strong CP problem

Much less constrained: PRD 81, 123530 (2010),...

Axion Experimental Landscape

Axions-like particles (ALPS) arise naturally in string theories.

Do not solve Strong CP problem

Much less constrained: PRD 81, 123530 (2010),...

Axion Compton Wavelength ~ size of detector (cm to meters)

Reyco Henning

Resonant conversion of DM axion in high-Q cavity in magnetic field

Sikivie PRL 51(1983) 1415

Dielectric Haloscopes: MADMAX

Reyco Henning

DM QCD Axions Below 1µeV

- Pre-inflation PQ symmetry breaking allows DM axion masses 10⁻¹² to 10⁻⁴ eV or even beyond
- GUT Scale Axion at ~ 1 neV (*f_a* ~ 10¹⁵ GeV) generic feature of String Theories
- Many proposals exist for removing fine tuning required for m_a << 1µeV. Typically require new particles.
- Or can just require long-scale inflation, e.g. Phys. Rev. D 98, 035017 (2018)

Max Tegmark, Anthony Aguirre, Martin J. Rees, and Frank Wilczek. Dimensionless constants, cosmology, and other dark matters. *Phys. Rev. D*, 73:023505, Jan 2006.

Luca Visinelli and Paolo Gondolo. Axion cold dark matter in nonstandard cosmologies. *Phys. Rev. D*, 81:063508, March 2010.

Raymond T. Co, Francesco D'Eramo, and Lawrence J. Hall. Gravitino or Axino Dark Matter with Reheat Temperature as high as 10¹⁶ GeV. *JHEP*, 03:005, 2017.

Hooman Davoudiasl, Dan Hooper, and Samuel D. McDermott. Inflatable Dark Matter. *Phys. Rev. Lett.*, 116(3):031303, 2016.

Prateek Agrawal, Gustavo Marques-Tavares, and Wei Xue. Opening up the QCD axion window. *JHEP*, 03:049, 2018.

Peter W. Graham and Adam Scherlis. Stochastic axion scenario. *Phys. Rev. D*, 98:035017, Aug 2018.

Manuel A. Buen-Abad and JiJi Fan. Dynamical axion misalignment with small instantons. https://arxiv.org/abs/1911.05737, 2019.

Takeshi Kobayashi and Lorenzo Ubaldi. Inflaxion dark matter. *Journal of High Energy Physics*, 2019:147, 2019.

Tommi Tenkanen and Luca Visinelli. Axion dark matter from higgs inflation with an intermediate h*. Journal of Cosmology and Astroparticle Physics, 2019:033–033, 2019.

Raymond T. Co, Eric Gonzalez, and Keisuke Harigaya. Axion misalignment driven to the bottom. *Journal of High Energy Physics*, 2019:162, 2019.

Axions with masses below 1µeV require serious consideration

Reyco Henning

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

<u>ABRACADABRA</u>→

A Search for Low-Mass Axion Dark Matter*

"A Broadband or Resonant Approach to Cosmic Axion Detection with an Amplifying *B*-field Ring Apparatus"

*PRL 117 (2016) 141801

Reyco Henning

Treat ultralight axion DM as coherent field

$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Treat ultralight axion DM as coherent field

$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a}\sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Treat ultralight axion DM as coherent field

$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a} \sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \underbrace{\frac{\partial \mathbf{E}}{\partial t}}_{\text{limit}} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Magnetoquasistatic
limit
$$\mathbf{E} = \mathbf{0}, \text{ DM } v \sim 10^{-3}$$

Treat ultralight axion DM as coherent field

$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a} \sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Yields axion-induced effective current:

 $\mathbf{J}_{\rm eff} = g_{a\gamma\gamma} \sqrt{2\rho_{\rm DM}} \cos(m_a t) \mathbf{B}_{\mathbf{0}}$

Zero DC Field

Induced B-field

Treat ultralight axion DM as coherent field

$$a(t) = \frac{\sqrt{2\rho_{\rm DM}}}{m_a} \sin(m_a t)$$

Generic axion modifies Ampere's Law:

$$\nabla \times \mathbf{B} = \frac{\partial \mathbf{E}}{\partial t} - g_{a\gamma\gamma} (\mathbf{E} \times \nabla a - \mathbf{B} \frac{\partial a}{\partial t})$$

Yields axion-induced effective current:

 $\mathbf{J}_{\text{eff}} = g_{a\gamma\gamma} \sqrt{2\rho_{\text{DM}}} \cos(m_a t) \mathbf{B}_{\mathbf{0}}$

Induces oscillating magnetic field in torus

DM Axion Signal

- Standard halo model with width $\Delta f/f \sim 10^{-6}$
- Possible substructure

Two Readout Strategies

Broadband

Thermal noise in pickup loop dominates

Resonance Mode Sensitivity:

$$g_{a\gamma\gamma} \propto \sqrt{L_T} (\frac{1}{m_a t})^{\frac{1}{4}} \frac{1}{B_{\max} G V_B} \sqrt{\frac{k_B T}{\rho_{\text{DM}} Q_0}}$$

Loop

Two Readout Strategies

Resonant

ABRACADABRA-10 cm

PRD 99 (2019) 052012, PRL 122 (2019) 121802

Dissecting ABRACADABRA-10 cm

Reyco Henning

Dissecting ABRACADABRA-10 cm

G10 Support structure (nylon bolts)

Reyco Henning

Assembling ABRACADABRA-10 cm

Pickup Loop

Mechanical Suspension System

Example Spectrum

- 10 kHz high-pass and 1.9MHz anti-aliasing filters before digitizer
- Digitizer-only data show spurious noise spikes that were vetoed.

ABRACADABRA-10cm Axion Search Run 1
Calibration

- Calibrate by injecting AC current into the calibration loop
- Fine scan from 10 kHz - 3 MHz at multiple amplitudes
- Gain lower than expected by a factor of ~6.5. Corrected for next phase

Broadband Data Collection Procedure

- Collected data with magnet on continuously for 4 weeks from July August
- AlazarTech ATS9870 8-bit Digitizer locked to a Rb oscillator frequency standard
- 10 MS/s for 2.4 × 10⁶ seconds (25T samples total)
- Apply FFTW on-the-fly on DAQ machine to compute Power Spectral Distributions (PSD)
- Acquisition (currently) limited to 1 cpu and 8 TB max data size

Axion Search Approach

- Search range to 75 kHz 2 MHz (*m_a* in 0.31 — 8.1 neV).
- 8.6 million mass points
- For each mass point, calculate a likelihood function
- Axion discovery search based on a log-likelihood ratio test, between the best fit and the null hypothesis
- 5σ discovery threshold: TS>56.1
- Accounts for Look Elsewhere Effect.

For details, see: PRD 97 (2018) 123006

PIRE/GEMADARC May 2023

Sub-µeV axions

Axion Limits

ABRA-10 cm Run 2

- Reduced wiring lengths reduced parasitic inductances
- Cylindrical Pickup loop to reduce loop inductance
- Boosted gain by factor ~10
- Had to implement active feedback to reduce noise <1kHz
- Results submitted for publication 2102.06722

Run 2 Data Cleaning

Ex: Remove peaks that drift in time Technique developed by A. Gavin (UNC)

Reyco Henning

PIRE/GEMADARC May 2023

Summary of Recent Results

The Majorana Demonstrator

Reyco Henning

PIRE/GEMADARC May 2023

Motivation for Oußß Search

- Implications of discovery:
 - Neutrino is Majorana* (own antiparticle)
 - Total lepton number is not conserved
 - Neutrinos have mass* (known)
 - Absolute neutrino mass.
- Ουββ nuclear decay may occur via several processes (SUSY, RH currents, etc)
- Canonical example: Exchange of virtual Majorana neutrino

PIRE/GEMADARC May 2023

* Schechter et al, Phys. Rev. D25, 2951 (1982)

Experimental Considerations

- Measure *extremely* rare decay rates :
- $T_{1/2} \sim 10^{26} 10^{27}$ years ~ few decays per tonne per year.
- Large, highly efficient source mass.
- Extremely low (near-zero) backgrounds in the $0\nu\beta\beta$ peak region-of-interest (ROI)
- 1. High Q value
- 2. Best possible energy resolution
 - Minimize 0vββ peak ROI to maximize S/B
 - Separate $2\nu\beta\beta/0\nu\beta\beta$

Background Reduction Challenges

Background Identification

- Natural isotope chains:
 - ²³²Th, ²³⁵U, ²³⁸U, Rn
- $2\nu\beta\beta$ -decays
- Cosmic Rays:
 - Activation at surface
 - Hard neutrons from cosmic rays in rock and shield.
 - Prompt
- Pushing limits in ICP-MS, materials science, radioassay. le. Ultra-low radioactive background, fast, low-noise electronics

0vββ decay Experiments - Efforts Underway

CUORE

KamLAND Zen

Collaboration Isotope Technique		Technique	mass (0vββ isotope)	Status
CANDLES	Ca-48	305 kg CaF2 crystals - liq. scint	0.3 kg	Construction
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	$\sim ton$	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Complete
GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	25 kg	Operating
LEGEND	Ge-76	Point contact with active veto	~ ton	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
LUCIFER (CUPID)	Se-82	ZnSe scint. bolometer	18 kg	R&D
AMoRE	Mo-100	CaMoO ₄ scint. bolometer	1.5 - 200 kg	R&D
LUMINEU (CUPID)	Mo-100	ZnMoO ₄ / Li ₂ MoO ₄ scint. bolometer	1.5 - 5 kg	R&D
COBRA	Cd-114,116	CdZnTe detectors	10 kg	R&D
CUORICINO, CUORE-0	Te-130	TeO ₂ Bolometer	10 kg, 11 kg	Complete
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
CUPID	Te-130	TeO ₂ Bolometer & scint.	~ ton	R&D
SNO+	Te-130	0.3% natTe suspended in Scint	160 kg	Construction
EXO200	Xe-136	Xe liquid TPC	79 kg	Operating
nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	380 kg	Complete
KamLAND2-Zen	Xe-136	2.7% in liquid scint.	750 kg	Upgrade
NEXT-NEW	Xe-136	High pressure Xe TPC	5 kg	Operating
NEXT-100	Xe-136	High pressure Xe TPC	100 kg - ton	R&D
PandaX - III	Xe-136	High pressure Xe TPC	\sim ton	R&D
DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

GERDA

MAJORANA

SNO+

The MAJORANA DEMONSTRATOR

Funded by DOE Office of Nuclear Physics, NSF Particle Astrophysics, & NSF Nuclear Physics with additional contributions from international collaborators.

Goals: - Demonstrate backgrounds low enough to justify building a tonne scale experiment.

- Establish feasibility to construct & field modular arrays of Ge detectors.
- Searches for additional physics beyond the standard model.
- · Located underground at 4850' Sanford Underground Research Facility
- · Background Goal in the 0vββ peak region of interest (4 keV at 2039 keV)
- · 44.1-kg of Ge detectors
 - 29.7 kg of 88% enriched ⁷⁶Ge crystals
 - 14.4 kg of ^{nat}Ge
 - Detector Technology: P-type, point-contact.
- · 2 independent cryostats
 - ultra-clean, electroformed Cu
 - 22 kg of detectors per cryostat
 - naturally scalable
- · Compact Shield
 - low-background passive Cu and Pb shield with active muon veto

Reyco Henning

PIRE/GEMADARC May 2023

Underground Location of MAJORANA Laboratory

Davis Campus, 4850' level, near Yates shaft

Reyco Henning

PIRE/GEMADARC May 2023

MJD Construction

Reyco Henning

PIRE/GEMADARC May 2023

Tale of Two Axion Searches

Electroformed Cu and enriched Ge

Fig: Courtesy M. Kapust

Fig: Courtesy M. Kapust

PIRE/GEMADARC May 2023

Tale of Two Axion Searches

MAJORANA Results

PHYSICAL REVIEW LETTERS 120, 132502 (2018)

T_{1/2} >1.9×10²⁵ years

QCD Axion Properties

$$m_{\rm a} \simeq 0.6 \,\mathrm{eV} \frac{10^7 \,\mathrm{GeV}}{f_{\rm a}}$$

f_a : PQ Symmetry Breaking Scale Relationship Model-dependent

Other BSM Physics: Light (1-100 keV-scale) Bosonic DM

- Low threshold PPC Ge detectors well suited for keV-scale DM search
- Pseudoscalar (ALPs) or Vector DM could deposit rest mass-energy in detector
- See: M. Pospelov, A. Ritz, and M. Voloshin, Phys. Rev. D, 78, 115012 (2008).

Reyco Henning

PIRE/GEMADARC May 2023

PHYSICAL REVIEW D 78, 115012 (2008)

Bosonic super-WIMPs as keV-scale dark matter

Maxim Pospelov,^{1,2} Adam Ritz,¹ and Mikhail Voloshin^{3,4}

 ¹Department of Physics and Astronomy, University of Victoria, Victoria, British Colombia, V8P 1A1 Canada
²Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9, Canada
³William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
⁴Institute of Theoretical and Experimental Physics, Moscow, 117218, Russia (Received 15 August 2008; published 16 December 2008)

Reyco Henning

Low-energy backgrounds world-leading for Ge in commissioning data!

Bosonic DM limits

 $\begin{array}{l} \textbf{Pseudoscalar ALP-like DM} \\ g_{Ae} < 4.5 \times 10^{-13} \\ S(E) \approx g_{A_e}^2 \left(\frac{m_A}{\text{keV}}\right) \left(\frac{\sigma_{pe}}{\text{barn}}\right) \frac{1.2 \times 10^{-19}}{A} \end{array}$

Vector DM electron coupling α' $\left(\frac{\alpha'}{\alpha}\right) < 9.7 \times 10^{-28}$ $\Phi_{\rm DM}(m_V)\sigma_{Ve}(m_V) = \frac{4 \times 10^{23}}{m_V} \left(\frac{\alpha'}{\alpha}\right) \frac{\sigma_{pe}m_V}{A}$

Updated limits

PIRE/GEMADARC May 2023

Sanford Underground Research

Facility

Bonus slides

Other Limits

PRL 118 (2017) 161801

Three additional limits obtained:

• Solar axion coupling (14.4 keV ⁵⁷Fe M1)

Low-mass limit. 90% UL.

$$g_{AN}^{\text{eff}} \times g_{Ae} < 3.8 \times 10^{-17}$$

• Non-Paulian transition in Ge:

$$a_i a_j^{\dagger} - q \ a_j^{\dagger} a_i = \delta_{ij}$$
$$q = -1 + \beta^2$$

Binned likelihood study for peak at 10.6 keV $1/2~\beta^2 < 8.5 \times 10^{-48}~$ (90% CL UL)

Electron decay

Binned likelihood for peak at 11.1 keV

$$e^- \to \nu \ \bar{\nu} \ \nu$$

 $\tau_e > 1.2 \times 10^{24} \ \text{yr}$ (90% CL UL)

Ονββ Rate and Neutrino Mass

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu}(E_0, Z) \left| \left\langle m_{\beta\beta} \right\rangle \right|^2 \left| M^{0\nu} \right|^2$$

 $T_{1/2}^{0v}$: Half-life

 G^{0v} : Phase Space (Known)

Т

 M^{0v} : Nuclear Matrix Element (large uncertainty)

$$\left| < m_{\beta\beta} > \right| = \left| \sum_{i} \left| U_{ei} \right|^2 m_{v_i} e^{i\alpha_i} \right|$$

Effective Majorana electron neutrino mass*

- $0v\beta\beta$ decay can probe **absolute** neutrino mass scale and (P) mixing.
- Current neutrino experiments measure mass squared B differences: Δm^2 .

*Assumes v_m exchange

Neutrino Flavor Mixing

- Mass eigenstates different than flavor eigenstates.
- ⇒ Propagating neutrinos undergo flavor oscillations.
- Mass to flavor relationship described by neutrino mixing matrix

Parameter	best-fit	3σ
$\overline{\Delta m^2_{21} \ [10^{-5} \ {\rm eV}^2]}$	7.37	6.93 - 7.97
$ \Delta m^2 \;[10^{-3}$ eV $^2]$	2.50(2.46)	$2.37 - 2.63 \ (2.33 - 2.60)$
$\sin^2 heta_{12}$	0.297	0.250 - 0.354
$\sin^2\theta_{23},\Delta m^2>0$	0.437	0.379 - 0.616
$\sin^2 \theta_{23}, \Delta m^2 < 0$	0.569	0.383 - 0.637
$\sin^2 \theta_{13}, \Delta m^2 > 0$	0.0214	0.0185 - 0.0246
$\sin^2 \theta_{13}, \Delta m^2 < 0$	0.0218	0.0186 - 0.0248
δ/π	1.35(1.32)	(0.92 - 1.99)
		((0.83 - 1.99))

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{j\delta} s_{13} \\ 0 & 1 & 0 \\ -e^{j\delta} s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{j\alpha_{1}} & 0 & 0 \\ 0 & e^{j\alpha_{2}} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$c_{ij} = \cos \theta_{ij} \ s_{ij} = \sin \theta_{ij} \qquad \text{CP Phase}$$

Axion Search Approach

- Rebin the data into 53 (24) of our 10 MS/s (1 MS/s) spectra that span the data taking period
- Limit our search range to 75 kHz 2 MHz (*m_a* in 0.31 8.1 neV)
- For each mass point, we calculate a likelihood function
- Power bins are Erlang distributed with shape parameter N_{avg} (average over N_{avg} exponential distributions) and mean s_{i,k}+b_i
- Depends only on g_{aγγ} and nuisance parameters, b_i, which are assumed to be constant across the axion signal, but can vary slowly in time

Axion Interactions with the Standard Model

 In addition to canceling the CP violating term, the axion also adds a lot of interactions with the SM!

Axion Interactions with the Standard Model

Tale of Two Axion Searches

Industrial Assay Programs

Table 3

Radioactive isotope levels within various materials and their 68% CL uncertainties. Values for K were not always provided by the analysis.

#	Material	Mathed	V(10-9 g/g)	232Th (10-12 g/g)	23811 (10-12 g/g)
#	INI GL CE I GE	Meulod	K (10 - 8/8)		-u (10 g/g)
	Metals				
1	Cu electroformed stock sample	ICPMS		<0.17	
2	Cu electroformed stock sample	ICPMS		0.011 ± 0.005	0.017 ± 0.003
3	Cu electrotormed stock sample	GDMS	<2.2	<50	<70
4	Cu electrolormed stock sample	ICPMS		<0.029	<0.008
5	Cu electroformed stock sample	ICPMS		<0.029	< 0.009
7	Cu electroformed stock sample	ICPMS		<0.029	<0.008
8	Cu Electroformed machined part guide clip	ICPMS		<0.030	<0.009
å	Cu Electroformed machined part, guide clip	ICPMS		0.330 ± 0.022 0.112 ± 0.009	0.078 ± 0.002
10	Cu Electroformed, machined part, guide clip	ICPMS		0.170 ± 0.008	0.073 ± 0.002 0.087 + 0.002
11	Cu Electroformed, machined part, spring clip	ICPMS		0.215 ± 0.009	0.130 ± 0.010
12	Cu Electroformed, machined part, hex bolt	ICPMS		0.118 ± 0.011	0.035 ± 0.004
13	Cu Electroformed, machined part, hex bolt	ICPMS		0.119 ± 0.014	0.041 ± 0.003
14	Cu Electroformed, machined part, hex bolt	ICPMS		0.148 ± 0.021	0.051 ± 0.002
15	Cu, C10100 cake stock, (source for Rows 16, 17)	ICPMS		0.46 ± 0.06	0.21 ± 0.06
16	Cu, C10100 2,5 in plate stock, exterior sample	ICPMS		0.27 ± 0.05	0.10 ± 0.02
17	Cu, C10100 2.5 in plate stock, interior sample	ICPMS		0.27 ± 0.05	0.12 ± 0.02
18	Cu, C10100 1 in plate stock, saw cut (same stock Row 19)	ICPMS		10.2 ± 1.0	6.62 ± 0.58
19	Cu, C10100 1 in plate stock, machined surfaces	ICPMS		1.88 ± 0.45	3.11 ± 0.39
20	Cu, C10100 1 \times 2 in bar stock, machined surfaces	ICPMS		2.12 ± 0.39	2.25 ± 0.15
21	Cu, C10100 1 in plate stock	ICPMS		<0.029	0.013 ± 0.002
22	Cu, C10100 2,5 in plate stock	ICPMS		<0,030	0.017 ± 0.003
23	Cu, C10100 2.5 in plate stock	ICPMS		0.049 ± 0.010	0.061 ± 0.006
24	Cu, C 10100 0,5 In plate stock	ICPMS	-05.000	<0.030	0.009 ± 0.001
20	Cu wire, Carloma File wire	ICPMS	<25 000	<8/	<40
20	PD, smelled from virgin ore, sullvan metals	y count	<00	<100	< 500
28	Pb UW	y count	<160	<170	<400
29	Pb, smelted from virgin ore. Sullivan Metals	y count	<160	<173	<241
30	Pb, smelted from virgin ore, Sullivan Metals	GDMS	4+2	<10	<10
31	Pb. UW	GDMS	23 ± 11	<8	<10
32	Pb, UW	GDMS	<0.4	<8	<9
33	Pb, archeological ingot, UChicago	GDMS	<0.3	<9	<9
34	Pb, archeological sample prepared by Mifer Brick	GDMS	<0,2	<8	<10
35	Pb (Average from Brick samples)	ICPMS		1.3 ± 1.3	2.9 ± 2.0
36	Sn, sample of unknown origin	γ count	800 ± 450	<760	<137
37	Sn, sample of unknown origin	ICPMS	<108	940 ± 50	1190 ± 170
38	Sn, sample supplied by Canberra	ICPMS	<108	760 ± 70	1150 ± 350
39	6-way SS conflat intersection, MDC Vac, Prod., ILC	γ count	<840	3200 ± 1000	<400
40	TIG-Ce welding rods	γ count	(1.60 ± 0.14) × 10 ⁵	$(1.68 \pm 0.31) \times 10^{7}$	<72 000
41	TIG-Zr welding rods	γ count	5500 ± 4600	(1.08 ± 0.05) × 10 ⁵	19 300 ± 1600
42	Cr, stock used for vapor depositions	ICPMS	<7000	<20 000	< 5000
43	Au, sputtering target	ICPMS	<270		570 ± 130
44	Au (4N8), sputtered at LBNL	ICPMS	47 000 ± 1000	1980 ± 370	2000 ± 300
45	Al, sputtered, sample film provided by ORTEC	ICPMS	$(1.42 \pm 0.51) \times 10^7$	2000 ± 250	5730 ± 300
46	Al, sputtered, sample film provided by ORTEC	ICPMS	$(1.10 \pm 0.01) \times 10^5$	2210 ± 460	4390 ± 340
47	Ge, sputtered, sample film provided by ORTEC	ICPMS	<430	207 ± 38	843 ± 62
48	Ge, sputtered, sample film provided by ORTEC	ICPMS	<215	349 ± 80	1340 ± 120
49	amorphous Ge, sputtered at LBNL	ICPMS	4800 ± 230	2370 ± 690	1680 ± 350
50	Cr, sputtered at LBNL	ICPMS	<1900	5240 ± 1290	5030 ± 700
51	Ti film, sputtered at LBNL Plastics	ICPMS		<400	<100
52	Teflon® TE-6742	NAA	0.15 ± 0.02	0.025 ± 0.002	< 0.4
53	Peek® Victrex®	NAA	180 ± 110	<400	<5100
		70			
	1/	ίυ ε	entries	S	

Abgrall et al. NIM A 828 (2016) 22

$0\nu\beta\beta$ -decay and Majorana Neutrinos

Schechter et al, Phys. Rev. D25, 2951 (1982)

Majorana nature verification *independent* of process that mediates $0\nu\beta\beta$ decay!

ABRACADABRA-10 cm First Dataset

10 MS/s Dataset 1 MS/s Dataset

		Integrated Time	471 h	427h	
		Individual Spectra	2120	960)
		Frequency Range	500 kHz - 3 MHz	75 kHz - 5	00 kHz
Reyco Henning	PIRE/GEMADARC	May 2023 🎽	Tale of Two Axion Sea	rches	72
GERDA

- Direct immersion of enriched Ge detectors in LAr
- Phase I (Nov 2011- May 2013)
- Phase II (Dec 2015- ongoing)

GERDA Building

Reyco Henning

GERDA Results

74

Mass Limit Summary

LEGEND 76Ge LEGEND

Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay

LEGEND mission: "The collaboration aims to develop a phased, ⁷⁶Ge based doublebeta decay experimental program with **discovery potential** at a half-life beyond 10²⁸ years, using existing resources as appropriate to expedite physics results."

First Stage:

- (up to) 200 kg ⁷⁶Ge in upgrade of existing infrastructure at LNGS
- •BG goal 0.6 cts/(FWHM t yr)
- •Data start ~2021
- •Will use existing MAJORANA & GERDA detectors
- •Proposal submitted to LNGS in March 2018
- •Have funding for 130 of the 200 kg in place.

Subsequent Stages:

- •1000 kg ⁷⁶Ge (staged)
- •Timeline coordinated with First Stage
- •BG goal 0.1 cts/(FWHM t yr)
- Location tbd
- •Required depth (Ge-77m) under investigation

Resolution@2039keV: 2.5 keV, $0\nu\beta\beta$ HL: ~2e25 y

Reyco Henning

Resolution@2039keV: 250 keV, $0\nu\beta\beta$ HL: ~2e25 y

Reyco Henning

Resolution@2039keV: 250 keV, $0\nu\beta\beta$ HL: ~2e25 y

Reyco Henning

Sensitivity, Background and Exposure

⁷⁶Ge (87% enr.)

$0\nu\beta\beta$ -decay and Majorana Neutrinos

Schechter et al, Phys. Rev. D25, 2951 (1982)

Majorana nature verification *independent* of process that mediates $0\nu\beta\beta$ decay!

More about Majorana vs. Dirac

Note: Only valid if neutrinos are massive.

Lorentz Boost

Lorentz Boost

Original argument by Kayser, 1985

Neutrino Masses

- •Absolute masses weakly constrained, < 1eV.
- •Relative mass-squared differences known.
- •Three possible scenarios: Quasi-degenerate, also:

Origin of Matter

Matrix Elements

Combined Mass Limits

Estimated KATRIN Sensitivity

Ονββ Rate and Neutrino Mass

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu}(E_0, Z) \left| \left\langle m_{\beta\beta} \right\rangle \right|^2 \left| M^{0\nu} \right|^2$$

 $T_{1/2}^{0v}$: Half-life

 G^{0v} : Phase Space (Known)

Т

 M^{0v} : Nuclear Matrix Element (large uncertainty)

$$| < m_{\beta\beta} > | = \left| \sum_{i} \left| U_{ei} \right|^2 m_{v_i} e^{i\alpha_i} \right|$$

Effective Majorana electron neutrino mass*

- $0v\beta\beta$ decay can probe **absolute** neutrino mass scale and (P) mixing.
- Current neutrino experiments measure mass squared B differences: Δm^2 .

*Assumes v_m exchange

Transient Noise at High Frequency

• In the present analysis, we had to discard ~30% of the data

ABRACADABRA-75 cm

- $R_{\rm in} = R_{\rm out}/2 = h/3 = 75 \,\rm cm$
- $B_0 = 1 5 T$
- Resonant Goals:
 - Quality factor of 10⁶
 - Thermal noise limited at 100
- ABRACADABRA Magnet
 - Approx. 2 50 MJ stored energy
- ed at 100 net

3m

Ultimate goal: ABRA-QCD — Probe GUT-scale QCD axion

Axion Astrophysics

Frequency [Hz]

Reyco Henning

Axion Astrophysics

Frequency [Hz]

Reyco Henning