

The 9th PIRE - GEMADARC Collaboration Meeting

张振华 Zhenhua Zhang

(CDEX Collaboration)

Tsinghua University, Beijing

zhangzh20@mails.tsinghua.edu.cn

20230601

Outline

PART ONE Dark Matter and Experiments

PART TWO Motivation

PART THREE Expected Energy Spectra

PART FOUR Constraint Results

1.1 Dark Matter

Dark Matter (DM): an indispensable part of the standard cosmological model.

- 1. Galactic rotation,
- 2. Bullet Nebula,
- 3. CMB,
- 4. Gravitational lens,

Atoms

4.6%

Dark

Matter 24%

Dark

Energy

71.4%

1.2 Dark Matter Direct Detection

Experiment	Target	Signal	Laboratory
XENON	LXe	Ionization + Scintillation	Gran Sasso
DarkSide	LAr	Ionization + Scintillation	Gran Sasso
KIMS	CsI(Tl)	Scintillation	Y2L
CRESST	CaWo ₄	Phonon + Scintillation	Gran Sasso
EDELWEISS	Ge	Ionization + Phonon	Modane
PandaX	LXe	Ionization + Scintillation	CJPL
CDEX	Ge	Ionization	CJPL

1.3 CDEX (China Dark Matter Experiment)

Outline

PART ONE Dark Matter and Experiments

PART TWO Motivation

PART THREE Expected Energy Spectra

PART FOUR Constraint Results

2.1 Boosted Dark Matter

No definite signal has been found in the direct or indirect DM search!

Light dark matter particle: χ

Lower cross section σ_{χ} ? \rightarrow Lower background? Larger detector?

Lower DM mass m_{χ} ? \rightarrow Lower threshold? Higher recoil energy?

How?

 χ boosted by cosmic rays (PROSPECT, PandaX-II and CDEX-10), neutrinos, ... χ boosted via solar reflection

 χ from evaporating Primordial Black Holes (PBHs)

2.2 Primordial Black Hole (PBH)

Two waves of interest in PBH:

1997, MACHO, $0.5M_{\odot}$ compact objects excess in the Large Magellanic Cloud microlensing! 2016, LIGO-Virgo: gravitational waves (GW) from mergers of $\sim 10M_{\odot}$ black holes. These black holes could be primordial rather than astrophysical.

ROI: ~
$$\mathcal{O}(10^{16} \text{ g}) \Rightarrow M_{PBH} \sim \frac{c^3 t}{G} \sim 10^{15} \left(\frac{t}{10^{-23} \text{ s}}\right) \text{ g} \Rightarrow t \sim 10^{-22} \text{ s}$$

Formation: gravitational collapse from density fluctuations in the early Universe

2.3 Constraints on PBH

Constraints on evaporating PBHs:

a. Big Bang Nucleosynthesis (BBN)

b. Cosmic Microwave Background (CMB)

c. Extragalactic and Galactic γ-ray backgrounds

d. Extragalactic and Galactic cosmic rays

e. PBH explosions

f. More speculative effects

 $M_{PBH} \sim 10^{16} \text{ g} (M_{Halley} \sim 10^{18} \text{ g})$ COMPTEL: Galactic γ -ray backgrounds Voyager-1: e^{\pm} EDGES: 21 cm JUNO, SuperK: ν

2.4 Hawking Radiation

Hawking Radiation: Stephen Hawking, Quantum Field Theory + General Relativity, BHs Emit radiation as black bodies and lose their masses, reaching the Planck mass.

CHARYBDIS (2003) and *BlackMax* (2008): compute the spectrum of particles generated by the evaporation of higher-dimensional BHs in a LHC-like detector.

PYTHIA, *HERWIG* and *Hazma*: particle physics codes compute the secondary spectra A distribution of BHs in the universe? Analytical approximations...

May 2019, *BlackHawk v1* released. Oct 2021, *BlackHawk v2*: **BSM** have been added!

2.5 Motivation

In BSM particle detection:

A novel boosted source

For Hawking radiation searching:

A novel direct searching object

Jan 2022, Calabrese et al., XENON-1T, PBH $\rightarrow \chi \rightarrow N$.

May 2022, Calabrese et al., XENON-1T, Super-K, PBH $\rightarrow \chi \rightarrow e$.

Sep 2022, Li et al., XENON-1T, Super-K, PBH $\rightarrow \chi \rightarrow e$.

Axion(-like): Super-K, Hyper-K (2022); e-ASTROGAM, AMEGO (2023).

Outline

PART ONE Dark Matter and Experiments

PART TWO Motivation

PART THREE Expected Energy Spectra

PART FOUR Constraint Results

3.1 χ Spectra from Evaporating PBHs

3.2 χ Flux Reaching Earth

$$\frac{d^2 \phi_{\chi}}{dT_{\chi} d\Omega} = \frac{d^2 \phi_{\chi}^{MW}}{dT_{\chi} d\Omega} + \frac{d^2 \phi_{\chi}^{EG}}{dT_{\chi} d\Omega} (3)$$

$$\frac{d^2 \phi_{\chi}^{MW}}{dT_{\chi} d} = \frac{1}{4\pi} \frac{f_{PBH}}{M_{PBH}} \int \frac{d\Omega_s}{4\pi} \int dl \rho_{MW}^{NFW} [r(s, \phi)] \frac{d^2 N_{\chi}}{dT_{\chi} dt} (4)$$
Navarro-Frenk-White DM Profile, $\rho_{\chi} = 0.4 \text{ GeV/c}$

$$\frac{d^2 \phi_{\chi}^{EG}}{dT_{\chi} d\Omega} = \frac{f_{PBH} \rho_{DM}}{4\pi M_{PBH}} \int dt [1 + z(t)] \frac{d^2 N_{\chi}}{dT_{\chi} dt} (5)$$

$$\rho_{DM} = 2.35 \times 10^{-30} \text{ g/cm}^3,$$
t: the time of matter-radiation equality $\rightarrow \text{ now}_{\circ}$

Ballistic-Trajectory Approximation (BTA)

$$T_d(T_0) = \frac{2m_{\chi}T_0}{2m_{\chi}e^{\tau} - T_0(1 + e^{\tau})} (6)$$

where, $\tau = d/l, d = 2400 \text{ m}_{\circ}$

г 1-1

$$l = \left[\sum_{N} n_{N} \sigma_{\chi N} \frac{2m_{N}m_{\chi}}{\left(m_{N} + m_{\chi}\right)^{2}}\right]^{-1} (7)$$

The rocks parameters:

[Phys. Rev. D 105, 052005 (2022)].

$$\sigma_{\chi N} = \sigma_{\chi p}^{\text{SI}} A_N^2 \left[\frac{m_N(m_\chi + m_p)}{m_p(m_\chi + m_N)} \right]^2 (8)$$

The χ flux arriving at the CJPL:

$$\frac{d^2 \phi_{\chi}^d}{dT_d d\Omega} \approx \frac{4m_{\chi}^2 e^{\tau}}{\left(2m_{\chi} + T_d - T_d e^{\tau}\right)^2} \left(\frac{d^2 \phi_{\chi}}{dT_0 d\Omega}\right) (9)$$

The differential nuclear recoil event rate: $\frac{dR}{dE_r}(E_r) = \sigma_{\chi Ge} N_{Ge} \int dT_d d\Omega \frac{d^2 \phi_{\chi}^d}{dT_d d\Omega} \frac{\Theta(E_r^{max} - E_r)}{E_r^{max}} (10)$ $\sigma_{\chi Ge} = F^2(E_r) \sigma_{\chi p}^{\text{SI}} A_{Ge}^2 \left[\frac{m_{Ge}(m_{\chi} + m_p)}{m_p(m_{\chi} + m_{Ge})} \right]^2 (11)$

 $F(E_r)$ is Helm form factor,

χ

χ

3.5 Excepted Observed Spectra

 $E_{det} = f_{nr} \cdot E_r$

Quenching factor f_{nr} : Lindhard, $\kappa = 0.16$

The differential energy deposition event rate:

 $\frac{dR}{dE_{det}} = \frac{dR}{dE_r} \cdot \left(\frac{df_{nr}}{dE_r} \cdot E_r + f_{nr}\right)^{-1} (13)$

CDEX-10 Energy Resolution: $std = 35.8 + 16.6 \times E(\text{keV})^{1/2}$ (eV).

Outline

PART ONE Dark Matter and Experiments

PART TWO Motivation

PART THREE Expected Energy Spectra

PART FOUR Constraint Results

4.1 Spectra Comparison

$$\chi^2 \left(M_{PBH}, f_{PBH}, m_{\chi}, \sigma_{\chi p}^{\text{SI}} \right) = \sum_i \frac{\left[n_i - B - S_i \left(M_{PBH}, f_{PBH}, m_{\chi}, \sigma_{\chi p}^{\text{SI}} \right) \right]^2}{\Delta_i^2}$$
(14)

Feldman-Cousins χ^2 , One-side 90% C.L.

CDEX-10: $BKG \sim 2.5$ cpkkd, 205.4 kg · day

4.2 Constraints – $(m_{\chi}, \sigma_{\chi p}^{SI})$

 $\chi^2(M_{PBH}, f_{PBH}, m_{\chi}, \sigma_{\chi p}^{SI})$ (M_{PBH}, f_{PBH}) from COMPTEL and EDGES CDEX gives $(m_{\chi}, \sigma_{\chi p}^{SI})$ now **CDEX-10:** 205.4 kg \cdot day, *BKG* ~ 2.5 cpkkd; **CDEX-50:** 50 kg \cdot yr, *BKG* ~ 0.01 cpkkd $_{\circ}$

4.3 Constraints - (M_{PBH}, f_{PBH})

 $\chi^2(M_{PBH}, f_{PBH}, m_{\chi}, \sigma_{\chi p}^{SI})$

If $(m_{\chi}, \sigma_{\chi p}^{SI})$ is known in the future, (M_{PBH}, f_{PBH}) will be limited.

CDEX-10 performs better at $M_{\text{PBH}} \gtrsim 8 \times 10^{15}$ g.

CDEX-50, lower background and larger exposure: explore the larger PBH.

Thanks for your attention!

arXiv: 2211.07477

Email: zhangzh20@mails.tsinghua.edu.cn